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Abstract
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closed form. We show that, in some cases, the intermediary cannot uniquely
implement the efficient allocation using a direct revelation mechanism. In
these cases, the mechanism also admits an equilibrium in which some (but
not all) agents “run” on the intermediary and withdraw their funds regardless
of their true liquidity needs. In other words, self-fulfilling runs can arise in
a generalized Green-Lin model and these runs are necessarily partial, with
only some agents participating.
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1 Introduction

Bank runs and financial panics are often thought to be self-fulfilling phenomena, in the sense

that individuals withdraw their funds in anticipation of a crisis and, together, these individual ac-

tions generate the crisis that everyone feared. A substantial literature has arisen asking whether or

not, and under what circumstances, a self-fulfilling bank run can be the outcome of an economic

model with optimizing agents and rational expectations. Early contributions to this literature as-

sumed particular institutional arrangements, such as a bank offering a demand-deposit contract. In

an influential recent paper, Green and Lin [6] study a model very much in the spirit of the classic

work of Diamond and Dybvig [4] but with no restrictions on contracts other than those imposed by

the physical environment. Their key departure from the previous literature is to assume that agents

have information about the order in which they will have an opportunity to withdraw. They derive

a striking result: in their environment, the efficient allocation can be uniquely implemented. In

other words, a financial intermediary can offer a contract that guarantees that the efficient outcome

will obtain in equilibrium, leaving no possibility of a self-fulfilling run.

We study the Green-Lin model under a more general specification of the distribution of pref-

erence types across agents. Whereas Green and Lin [6] assume that consumption needs are in-

dependent across agents, we allow for correlation. We show how the efficient allocation in this

environment can be found by solving a finite dynamic-programming problem, and we derive this

allocation in closed form. We then construct examples with the following properties. The efficient

allocation is (Bayesian) incentive compatible and, hence, can be implemented by a direct revela-

tion mechanism in which each agent reports his preference type to the intermediary. However, this

mechanism also admits an equilibrium in which some, but not all, agents run on the intermediary

and withdraw – claiming an immediate consumption need – regardless of their true type. In other

words, we show that self-fulfilling runs can emerge in a generalized Green-Lin model, and that

these runs are necessarily partial, with only some agents participating.

In the examples we construct, it is unlikely that all agents in the economy will face an immediate

need to consume. Once a large number of withdrawals have taken place, therefore, the intermedi-

ary will infer that few of the remaining agents have immediate consumption needs. If some agents

withdraw even though they do not need to consume right away, this inference will be incorrect. In

other words, when some agents run, their actions tend to make the intermediary unduly optimistic

about the consumption needs of the remaining agents. The intermediary will then conserve rela-
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tively few resources for future withdrawals. When the intermediary discovers that the consumption

needs of the remaining agents are higher than anticipated, it will decrease all subsequent payments

to agents, including the future payments to agents who have chosen not to withdraw.

Suppose, then, that an individual believes that the agents who have an opportunity to withdraw

before she does will all run. She recognizes that if she does not withdraw, the payment she receives

from the intermediary in the future will likely be small, which gives her an incentive to join the

run and withdraw right away. Notice that this incentive applies even if she believes the agents

who come after her will not participate in the run. The key point is that some of these agents

may truly have immediate consumption needs and, given her beliefs about these agents’ types,

the intermediary has kept inadequate resources to deal with those needs. This incentive to run

only applies if an individual’s withdrawal opportunity is early enough, that is, if sufficiently many

agents will contact the intermediary after her. As emphasized by Green and Lin [6, 7], an agent

who knows he is the last to contact the intermediary never has an incentive to run. For this reason,

the run equilibria we construct are necessarily partial; agents who are able to withdraw early do

so, while those who act later only withdraw if they have an immediate consumption need.

Notice that the effects described above disappear when types are assumed to be independent, as

in Green and Lin [6]. When an agent withdraws in that case, the action has no effect on the inter-

mediary’s perception of the types of the remaining agents since these types are simply independent

draws from a given distribution. Correlation in types is necessary for these effects to be present

and, hence, for our results to obtain.

Peck and Shell [9] also construct run equilibria in a model of financial intermediation without

any institutional or other restrictions on contracts. In the Peck-Shell model (as in the earlier work

of Diamond and Dybvig [4] and others), agents must decide whether or not to withdraw their

funds before knowing the order in which they will contact the intermediary. Relative to Green and

Lin [6], this approach introduces an additional information friction into the environment: agents

must act before knowing this particular (payoff-relevant) information. Whether such a friction is

necessary to generate run equilibria has remained an open question. We show that this friction is

not necessary; run equilibria can exist even when agents know the precise order in which they will

contact the intermediary.

Our framework also allows us to clarify the precise nature of the Peck-Shell results. In addition

to the informational assumptions described above, their examples rely on agents having different
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preferences than in the previous literature and it has been unclear whether this change in prefer-

ences is necessary for their results to obtain. In Section 4, we present examples in the spirit of

Peck and Shell [9] in which types are independent and preferences – and all other aspects of the

model except the informational assumptions – are exactly as in Green and Lin [6]. These exam-

ples demonstrate that the difference in information assumptions alone is sufficient to generate the

Peck-Shell results.

The remainder of the paper is organized as follows. We present the environment and derive the

efficient allocation in Sections 2 and 3, respectively. In Section 4, we discuss how this allocation

can be implemented in the presence of private information. We also present the main result of

Green and Lin [6] in the context of our model and examples in the spirit of Peck and Shell [9]. In

Section 5, we study the effects of correlation in types and present our main results. We offer some

concluding remarks in Section 6.

2 The Model

In this section we extend the Green-Lin model of financial intermediation to allow types to

be correlated across agents. We largely follow the notation in Green and Lin [6], with some

simplifications where possible.

2.1 The environment

There are two time periods, indexed by t ∈ {0, 1}, and a finite number I of traders. There is a single

good that can be consumed in each period. There is also an intermediary that acts as a benevolent

planner and attempts to distribute resources to maximize traders’ expected utility. Traders are

isolated from each other and from the intermediary (as in Wallace [10]), but have an opportunity

to contact the intermediary in each period in order to receive goods. Goods are nonstorable and

must be consumed immediately after contacting the intermediary.1 Let ai = (a0i , a
1
i ) denote the

consumption of trader i in each period and let a = (a1, . . . , aI) denote the complete vector of

consumption bundles.

1 This assumption implies that markets in which agents could trade after contacting the intermediary are infeasible.
See Jacklin [8] and Wallace [10] on this point.
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Preferences. Trader i’s utility is given by

v
¡
a0i , a

1
i ;ωi

¢
=

1

1− γ

¡
a0i + ωia

1
i

¢1−γ
, (1)

where ωi ∈ {0, 1} is her type and γ > 1 holds.2 If ωi = 0, the trader is impatient and only

cares about consumption in period 0. If ωi = 1, the trader is patient and cares about the sum of

her consumption in the two periods. A trader’s type is private information. Let ω = (ω1, . . . ωI)

denote the vector of types for all traders. As discussed below, traders will contact the intermediary

sequentially; we therefore refer to ω as the history of types. Let Ω denote the set {0, 1} , so that we

have ωi ∈ Ω and ω ∈ ΩI .

Uncertainty. Let P denote the probability measure on the set of all subsets of ΩI . We assume that

there exists a non-negative function p with

IX
θ=0

p (θ) = 1

such that

P (ω) = p (θ (ω))

C (I, θ (ω))
for all ω, (2)

where C is the standard combinatorial function

C (I, θ) =
I!

θ! (I − θ)!

and θ (ω) is the number of patient traders in the state ω. This approach is the same as that taken

in Wallace [10] and can be thought of in the following way: nature first chooses θ according to

the density function p, and then θ traders are chosen at random (with each trader equally likely

to be chosen) and assigned ωi = 1. The remaining traders are assigned ωi = 0. Note that, under

this approach, each trader has the same ex ante probability of being patient.3 The assumption of

independent types used by Green and Lin [6] is a special case where the density p is given by the

2 The assumption of a specific functional form for the utility function is not necessary here; Green and Lin [6]
only place assumptions on the level of risk aversion. However, since this specific form simplifies the derivation
of the efficient allocation substantially and is also used in our examples below, we make the assumption from the outset
(as in Green and Lin [7]).
3 More specifically, traders are exchangeable in the sense that the distribution of (ω1, . . . , ωI) is invariant under
permutations.
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binomial distribution

p (θ) = C (I, θ) (1− π)θ πI−θ,

with π ≥ 0 being the probability with which each individual trader is impatient.

Technology. The intermediary has an aggregate endowment of I units of the good in period 0.

Each unit of the good that is not consumed in the early period is transformed into R units of the

good in period 1. An (ex post) allocation in this environment is an assignment of an individual

allocation ai to each trader. Letting I = {1, 2, . . . , I} denote the set of traders, the set of feasible

(ex post) allocations is given by

A =

(
a : I→ R2+ :

X
i∈I

µ
a0i +

a1i
R

¶
≤ I

)
.

A state-contingent allocation is a mapping from states to (ex post) allocations; we denote such a

mapping by a. The set of feasible state-contingent allocations is then

F =
©
a : ΩI → A

ª
.

Sequential Service. Traders contact the intermediary sequentially in period 0 in a fixed order

given by the index i, beginning with trader 1 and ending with trader I .4 As a result, the period-0

consumption of trader i can only depend on the partial history ωi; the intermediary cannot possibly

know the types of any of the remaining traders when this payment must be made. The constraint

can be written as

a0i (ω) = E
£
a0i (ω) | ω1, . . . , ωi

¤
or, alternatively, as

a0i (ω) = a
0
i (bω) for all ω, bω such that ωi = bωi. (3)

In other words, trader i must consume the same amount in any two states that the intermediary

cannot possibly distinguish given the information it could have potentially received so far. We

4 We follow Green and Lin [7] and Andolfatto et al. [2] in assuming that traders know the exact order in which they
will contact the intermediary, rather than having imperfect information about this order as in Green and Lin [6].
The two approaches lead to the same results and the former simplifies the notation considerably.
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denote the set of feasible state-contingent allocations that satisfy the sequential service constraint

by

F0 = {a ∈ F : (3) holds} .

Expected Utility. Traders seek to maximize the expected value of the utility function v conditional

on their information. We can write the information set of trader i as

Ei =
©
∅,ΩI , {ω|ωi = 0} , {ω|ωi = 1}

ª
,

that is, a trader knows only her own type. Given a state-contingent allocation a and a (true) state

of nature ω∗, define

Ui (a, ω
∗) = E [v (ai (ω) , ω) | Ei (ω∗)] ,

where the expectation over states ω is based on the probability distribution P updated to reflect

trader i’s private information. Notice that the value taken by Ui depends only on the element ai of

the allocation a; payments made to other traders do not directly affect trader i’s utility. In addition,

the function Ui is Ei-measurable, implying that for a given allocation a it takes on at most two

values, one for ωi = 0 and another for ωi = 1.

3 The Efficient Allocation

We now derive the efficient, symmetric state-contingent allocation, that is, the allocation the

intermediary would assign if traders’ types were observable.5 While this solution has been partly

characterized before for the case of independent types (see, for example, Green and Lin [7]), ours

is the first complete solution of the efficient allocation in the Green-Lin model for an arbitrary

number of traders, as well as the first to allow for correlation in types.

The efficient allocation is the solution to

max
a∈F0

X
i∈I

E [Ui (a, ω)] . (4)

5 Note that the efficient allocation here will typically be different from the full-information first-best allocation
under no aggregate uncertainty as studied by Diamond and Dybvig [4]. When there is no aggregate uncertainty, the
sequential service constraint is nonbinding and the first-best allocation is the same as in an environment without
sequential service. In the presence of aggregate uncertainty, on the other hand, the sequential service constraint
always binds in the efficient allocation.
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Let a∗ denote this solution. It is straightforward to show that, under the preferences in (1), effi-

ciency requires that impatient traders only consume in period 0 and patient traders only consume

in period 1. In other words, a∗ must satisfy

a0i (ω) = 0 if ωi = 1 and a1i (ω) = 0 if ωi = 0. (5)

In addition, it is easy to see that the resources remaining in period 1 will be divided evenly among

the patient traders in this allocation, that is,

a1i (ω) =
R
³
I −

PI
i=1 a

0
i (ω)

´
θ (ω)

. (6)

All that remains, then, is to determine the payment that would be given to each trader i in period

0 if she is impatient, as a function of the partial history ωi. In other words, we need to determine

a0i (ω) for histories with ωi = 0. These payments can be found by using the results above to

reformulate (4) as a finite dynamic programming problem.

Our formulation of the problem makes use of some important implications of condition (2),

which governs the correlation structure of types. First, the condition implies that any two histo-

ries ω and bω with θ (ω) = θ (bω) are assigned the same probability by P .6 Second, consider the

probability of some continuation history ωI−i = (ωi+1, . . . , ωI) conditional on the partial history

ωi = (ω1, . . . .ωi) . Condition (2) implies that this probability depends only on the number of pa-

tient traders in the partial history, denoted θi (ω
i), and not on their positions within the history.

Abusing notation slightly, let P (ωi) denote the probability of the partial history ωi, that is, the

probability of the set
©eω ∈ ΩI : eωi = ωi

ª
. Then the following lemma establishes these two claims

and, thus, shows how θi is a useful summary statistic for ωi. A proof of this lemma is given in the

appendix.

Lemma 1 Under (2), θi (ωi) = θi
¡bωi
¢

implies both

P
¡
ωi
¢
= P

¡bωi
¢

and
P
¡
ωi, ωI−i¢ = P ¡bωi, ωI−i¢ for all ωI−i.

6 This fact is easily seen in (2), where the expression on the right-hand side depends on θ (ω) but not directly on ω.
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Now consider the problem faced by the intermediary when it encounters trader i. Let yi−1 denote

the amount of resources it has remaining after the first i− 1 encounters. If trader i is impatient, the

intermediary must decide how much of yi−1 should be given to her and how much should be saved

for future payments, including those to patient traders in period 1. The efficient payment to trader

i will depend on both the types of all traders encountered so far and the probability distribution

over types of the remaining traders. However, from Lemma 1 we know that the number of patient

traders encountered so far, θi−1, is sufficient to determine this probability distribution. We can,

therefore, determine this payment as a function of yi−1 and θi−1 alone; let a0i denote the payment.7

The proposition below presents the efficient payments a0i . The proof consists of converting (4)

into a dynamic programming problem and solving it backward. Presenting the solution requires

one additional piece of notation: let πi (θ) denote the probability of ωi = 0 conditional on θ of the

first i− 1 traders being patient.8 We then have the following result.

Proposition 1 The efficient allocation sets

a0i =
yi−1

ψi (θi−1)
1
γ + 1

for i = 1, . . . , I,

where yi−1 = I −
P

j<i a
0
j and the functions ψi are defined recursively by ψI (x) =

³
xR

1−γ
γ

´γ
and

ψi (x) = πi+1 (x)
³
ψi+1 (x)

1
γ + 1

´γ
+ (1− πi+1 (x))ψi+1 (x+ 1) (7)

for i = 1, . . . , I − 1.

A proof of the proposition is given in the appendix. Note that (7) depends only on the condi-

tional probabilities πi and the parametersR and γ. This equation can, therefore, be used recursively

to determine ψi (θi−1) for any values of i and θi−1. These functions ψi can then be used recursively,

starting with trader 1, to determine the efficient payment to an impatient trader following any par-

tial history ωi.

Example. Figure 1 depicts the efficient allocation for an example with 5 traders. Types are inde-

pendent, with each trader having probability 1/2 of being impatient; the other parameter values are

7 A comment on notation: The variable a0i here denotes the payment given to depositor i at date 0 if she is impatient
conditional on yi−1 and θi−1. Once we solve the full dynamic programming problem, we will be able to use this
variable to calculate the payment as a function only of the partial history, denoted above by a0i

¡
ωi
¢
.

8 That the probability πi depends only on θ follows from Lemma 1.
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given by R = 1.1 and γ = 6. The figure shows the possible period 0 consumption levels of each

trader. The circles correspond to partial histories in which trader 1 is impatient, while the triangles

correspond to histories in which trader 1 is patient.

The level of consumption trader 1 receives if she is impatient is given by the left-most circle in

the figure. For trader 2, the consumption she receives in period 0 if she is impatient depends on the

type of trader 1. If trader 1 was impatient, then the payment to trader 2 will be smaller (the circle),

while if trader 1 was patient the payment to trader 2 will be larger (the triangle). For trader 3, there

are four different possible consumption levels if she is impatient, depending on the types of the first

two traders. The figure shows that trader 3’s consumption is slightly higher following the partial

history ω2 = (0, 1) than following ω2 = (1, 0). In general, trader i faces 2i−1 possible consumption

levels, each corresponding to a particular realization of the types of the previous traders.
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Figure 1: Efficient allocation with independent types

4 Implementation

Proposition 1 derives the efficient way to allocate resources as a function of traders’ types. We

now turn to the study of mechanisms designed to implement this efficient allocation in the presence

of private information. We study direct revelation mechanisms, where traders are asked to report

their own types. Our question of interest is whether or not the resulting game has an equilibrium

where traders “run” on the intermediary by mis-reporting their types.
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4.1 Mechanisms and equilibrium

We study mechanisms in which each trader is asked to submit a message mi from some set

M . Let m = (m1, . . . ,mI) denote a profile of messages. Trader i’s communication strategy

is an Ei-measurable function μi : Ω
I → M . A profile of communication strategies is μ (ω) =

(μ1 (ω) , . . . , μI (ω)) . We use μ−i to denote the profile of strategies for all traders except i.

An allocation rule is a function α that assigns a feasible (ex post) allocation to any profile of

messages m.9 Let Γ denote the set of such rules, i.e.,

Γ =
©
α :M I → A

ª
.

Given any allocation rule α and any profile of communication strategies μ, we can generate a

state-contingent allocation by a = α ◦ μ, or, for each state ω,

a (ω) = α (μ (ω)) .

In other words, an allocation rule and a profile of communication strategies together create a map-

ping from states to feasible (ex post) allocations. We say that the allocation rule α respects se-

quential service if the corresponding state-contingent allocation a satisfies (3) for every profile of

communication strategies μ. Let Γ0 denote the set of feasible allocation rules that respect sequential

service.

In general, an allocation mechanism specifies both a message space and an allocation rule

(M,α) . Following the literature, we consider direct mechanisms in which each trader is asked

only to report her type, so that M = Ω = {0, 1} . We can then refer to the allocation mechanism

as simply being the rule α. We require α ∈ Γ0.

After a mechanism α is chosen, traders play the resulting direct revelation game. A Bayesian

Nash Equilibrium of this game is a communication-strategy profile μ∗ such that, for all i and for

all μi, we have10

Ui

¡
α ◦

¡
μ∗−i, μi

¢
, ω
¢
≤ Ui

¡
α ◦

¡
μ∗−i, μ

∗
i

¢
, ω
¢

for all ω.

9 Green and Lin [6] allow α to depend on the true state ω as well as the message profile m. However, since the
planner observes nothing about ω directly, there is no loss of generality in having α depend only on m.
10 The requirement “for all ω” in this expression might seem strange, since a depositor does not know ω. Recall,
however, that the function Ui takes on only two values, one for ωi = 0 and another for ωi = 1. Our notation
follows Green and Lin [6].
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We say that an allocation is implementable if it is the outcome of a Bayesian Nash equilibrium of

this game under some mechanism. In other words, a is implementable if there exists a mechanism

α and an equilibrium strategy profile μ∗ of the direct revelation game generated by α such that

a (ω) = α (μ∗ (ω)) for all ω. (8)

An allocation is truthfully implementable, or (Bayesian) incentive compatible, if it can be imple-

mented in an equilibrium where all traders report truthfully, that is, where μ∗i = ωi for all i. The

Revelation Principle tell us that an allocation is implementable if and only if it is incentive com-

patible.

Green and Lin [6] showed that when types are independent, the efficient allocation is always

incentive compatible. The same is true in our examples in the sections that follow. In other words,

in all of these cases the efficient allocation can be implemented by following a simple rule: treat

all messages as truthful and assign allocations according to the general solution to (4) derived in

Section 3. In what follows, we focus exclusively on this allocation rule, which we denote α∗.

While incentive compatibility of the efficient allocation guarantees that it is an equilibrium of

the direct revelation game under α∗, it may not be the only equilibrium. Our primary interest is in

the possibility that there also exist “run” equilibria in which some traders mis-report their types in

some states. The nature of the exercise we perform in this paper is the same as that in Diamond

and Dybvig [4] and others. Suppose the intermediary tries to implement the efficient allocation

using the rule α∗. Is there a run equilibrium of the resulting game?

Before moving on, we point out that some strategies in the direct revelation game generated

by α∗ are strictly dominated and, hence, cannot be part of any equilibrium. In particular, condi-

tion (5) states that any trader reporting to be patient will be given zero consumption in period 0.

Furthermore, it is straightforward to show that all traders reporting to be impatient will receive

positive consumption in period 0. Since impatient traders only care about consumption in period

0, lying when a trader is impatient is a strictly dominated strategy. For the analysis of equilibrium,

therefore, we only need to examine the action of a trader in the event that she is patient.

4.2 Run equilibria based on early decisions (Peck-Shell)

Suppose, for a moment, that traders must choose an action prior to learning the order in which

they will contact the intermediary. Places in this order are then assigned at random, with each
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trader equally likely to occupy each place. In this case, a trader’s expected utility when choosing a

strategy is an average of the utilities associated with each of the I places in the ordering

1

I

X
i∈I

E [Ui (a, ω)] . (9)

Note that this expression is equivalent to (4), the objective function of the intermediary.11

This approach was implicitly taken in the original work of Diamond and Dybvig [4] and in

much of the subsequent literature, including the recent work of Peck and Shell [9]. Relative to

the Green-Lin model described above, it contains an additional information friction: a trader’s

place in the order is not known to her when she must choose an action. We show that, under this

approach, an equilibrium can exist in which all traders run on the intermediary. Our examples

are very much in the spirit of Peck and Shell [9], who first showed that a run equilibrium can

exist when no restrictions other than sequential service are placed on the intermediary’s allocation

rule. However, the preferences used in Peck and Shell [9] are not of the form in (1); rather, in

their setting the marginal utility of consumption is higher for impatient traders than for patient

traders. This assumption simplifies the computations in their model by ensuring that an incentive

compatibility constraint binds at the efficient allocation. We show that differing marginal utilities

are not necessary for their result to obtain. Everything in our examples below is exactly as in

the Green-Lin model except for the information that traders have when choosing an action. In

particular, Proposition 1 still characterizes the efficient allocation in this setting, and types are

assumed to be independent.

Proposition 2 Suppose types are independent. When traders must choose a strategy before know-
ing their position in the order, (i) the efficient allocation a∗ is incentive compatible, but (ii) for
some parameter values the direct revelation game also has a run equilibrium.

The first part of the proposition follows directly from Green and Lin [6], who showed that the

efficient allocation is incentive compatible when types are independent and traders know their

position in the order. In other words, once traders are assigned positions in the order, each of them

will prefer to report truthfully if all others are doing so. It follows, therefore, that a trader who does
11 A proper formulation of this case would distinguish between a trader’s index (or “name”) and her eventual place in
the ordering. (See Green and Lin [6] for such a formulation.) Doing so, however, adds an extra layer of notation
without introducing any new insights. Since the issue only arises in the present subsection, we take the notational
shortcut of having traders act before any “names” are assigned. This shortcut does not change the essential analysis
in any way.
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not yet know her position in the order would make the same choice, since it will be a best response

whatever position she is assigned. The proof of the second part of the proposition is by example.

Example. There are 15 traders. Types are independent, with each trader having probability 0.1 of

being impatient; the other parameter values are given by R = 1.1 and γ = 6. We first calculate the

efficient allocation a∗ using Proposition 1. We then ask the following question. Suppose a trader

believes that all others will run, that is, claim to be impatient regardless of their true types. Would

this trader prefer to run as well or, if patient, would she prefer to wait and consume in period 1?

-0.32
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run
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EU(run)
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Figure 2: Expected utility if all other traders run

Figure 2 plots the utility associated with each of these actions for each possible position in the

order, conditional on the trader in question being patient. The circles represents the utility from

running, which is strictly decreasing in the trader’s position in the order. The triangles represents

the utility of reporting truthfully and waiting until period 1 to consume. The figure shows that if

the trader knew she would be among the first 12 traders to contact the intermediary, then – given

the belief that all other traders will run – she would strictly prefer to run. However, if she knew

she would be among the last three traders in the order, she would prefer to report truthfully and

consume in period 1 if patient.

The dashed lines in the figure represent the expected value of each action, given that a trader is

equally likely to end up in each of the 15 positions. The figure demonstrates that, for this example,
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the trader strictly prefers to run. Therefore, an equilibrium exists in which all traders claim to be

impatient and consume early; this outcome resembles a classic run on the intermediary.

The parameter values used in the above example are in no way special. It is easy to find other

combinations that also generate a run equilibrium. This fact is demonstrated in Figure 3, which

plots the gain in expected utility from following the run strategy (relative to reporting truthfully)

for a trader who believes that all other traders will run. The run equilibrium exists if and only if

this number is positive. The parameter values from the above example are represented by the upper

curve. As the figure shows, the run equilibrium exists for these values whenever the number of

traders is at least six. If the probability of impatience is increased to 0.5, the run equilibrium no

longer exists when there are six traders. However, the lower curve in the figure shows that it will

exist if there are at least nine traders. These calculations demonstrate both that there is nothing

special about the parameter values used for the example above and that increasing the number of

traders tends to make it more likely that a run equilibrium will exist in this setting.
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Figure 3: Incentive to run as I varies

4.3 A unique implementation result (Green-Lin)

Going back to Figure 2, notice an interesting feature in this graph: the last three traders to contact

the intermediary in period 0 would actually be better off waiting until period 1, even though all

other traders are claiming to be impatient. One can show that this reflects a general feature of the
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efficient allocation: once positions in the order are realized, traders I and I − 1 are always made

strictly better off by reporting truthfully.12 Suppose, then, that a trader had some information about

where she is likely to be in the order. A patient trader who believes she is the last to arrive would

prefer to report truthfully and wait until period 1 to consume. All traders should recognize this fact

and adjust their forecasts of others’ behavior accordingly.

It was precisely to capture these types of effects that Green and Lin [6] introduced the possibility

that a trader’s action could also depend on her position in the order. They showed that in this case,

assuming independent types, the direct revelation game has a unique equilibrium under the efficient

allocation rule α∗. In that equilibrium, all traders truthfully report their types; no one runs on the

intermediary.

Proposition 3 (Green and Lin [6]) If types are independent, the direct revelation game associated
with α∗ has a unique Bayesian Nash equilibrium and the efficient allocation a∗ obtains in that
equilibrium.

This remarkable result demonstrates that the basic elements of the Diamond-Dybvig framework

– illiquidity, private information, and sequential service – do not necessarily open the door to

self-fulfilling runs. In a particular environment that contains these features, an intermediary can

ensure that the efficient allocation obtains through the proper choice of contract. Recent work by

Andolfatto et al. [2] has extended Green and Lin’s result to a broader class of preferences and

has helped clarify the logic behind the arguments, particularly regarding the importance of the

assumption that traders’ types are independent.

The proof of the Green-Lin result uses iterated deletion of strictly dominated strategies in a

backward-induction fashion. We stated above that reporting truthfully is a strictly dominant strat-

egy for the last two traders in the order (see Lemma 2 in the appendix). As a first step, then, all

other strategies for these traders can be deleted. Once this is done, reporting truthfully becomes a

strictly dominant strategy for the third-to-last trader, and the process continues. The strategy pro-

file in which all traders report truthfully is the unique profile that survives this process and, hence,

is the unique Bayesian Nash equilibrium of the game.

One might be tempted to conclude from this argument that the unique implementation result is

“simply” a matter of backward induction and will thus obtain in any environment where traders

12 This result is stated as Lemma 2 in the appendix and a proof is given there.
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know the order in which they will contact the intermediary. In the next section, we show this is not

true. In other words, the arguments behind the results in Green and Lin [6] are more subtle than

they might appear at first and, as a result, introducing correlation in traders’ types can generate

equilibria in which some traders choose to run.

5 Correlated Types

In this section, we study the case where the realization of types is correlated across traders. All

other features of the environment are exactly as in Green and Lin [6]; in particular, all traders know

the order in which they will contact the intermediary. An immediate implication of the approach

is that there cannot be an equilibrium in which all traders claim to be impatient. Any run on the

intermediary would have to be partial, with only some traders participating. We show that a run

equilibrium can exist in this setting; specifically, we establish the following result.

Proposition 4 When types are correlated, for some parameter values it is the case that (i) the
efficient allocation a∗ is incentive compatible and (ii) the direct revelation game also has a run
equilibrium.

The proof is by example. We begin by presenting the simplest example in which a run equilibrium

can arise and we describe the intuition behind this example in some detail. We then show that the

result does not depend on the particular features of the simple example by constructing a richer

example where a run equilibrium exists and is driven by the same underlying intuition.

5.1 A basic example

To keep the presentation as simple as possible, we use the minimal number of traders needed

to generate a run equilibrium. As mentioned in the previous section, truth-telling is a dominant

strategy for the last two traders in the order. Hence, a run equilibrium clearly cannot exist when I =

2. It is fairly easy to see that one cannot exist when I = 3, either, as long as the efficient allocation

is strictly incentive compatible; the first trader knows that the last two will report truthfully and,

therefore, incentive compatibility implies that she will prefer to do the same. Hence, the minimum

number of traders needed to construct a run equilibrium is four, and we use I = 4 in our example.

Parameter Values. The number of patient traders is very likely to take on one particular value in
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this example; in this sense, there is little aggregate uncertainty. Specifically, we set

p (2) = 1− ε, and (10)

p (θ) =
ε

4
for θ = 0, 1, 3, 4,

where p (θ) is, as defined in (2), the probability of the set of states in which exactly θ traders are

patient. We choose ε to be small (we use ε = 0.4%). We set the other parameter values to R = 2

and γ = 6.

The Efficient Allocation. The efficient allocation is calculated using Proposition 1 and is depicted

in Figure 4. While the allocation has the same general structure as in the case of independent types

(see Figure 1), the nature of the correlation in this example simplifies the pattern of payments and

makes developing intuition fairly easy. Suppose for a moment that ε were zero, so that there is no

aggregate uncertainty; two traders would be impatient and two patient with certainty. The efficient

allocation would then be as in the textbook version of the Diamond-Dybvig model: a common

payment c0 > 1 will be given to the impatient traders and a larger payment c1 to the patient traders,

regardless of their order of arrival at the intermediary.
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Figure 4: Efficient allocation with correlated types

When ε is positive, the efficient allocation is more complex than the simple Diamond-Dybvig

allocation, but as long as ε is small the allocations will, in broad terms, be similar. In particular,

Figure 4 shows that the intermediary will give relatively large payments (greater than 1) to the first
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two impatient traders it encounters. If there are exactly two impatient traders, both will receive

consumption very close to the Diamond-Dybvig level of c0 (around 1.3 in the figure). If the in-

termediary encounters a third impatient trader, however, it realizes that one of the low-probability

states has occurred and will adjust payments accordingly. In such cases, the payment to the third

impatient trader – and the fourth, if there is one – will be much lower, as will the payment to any

patient trader. This decrease in payment size reflects the fact that the first two payments it made

(both close to c0) were based on a belief about the state ω that turned out to be “optimistic” rela-

tive to the realization. Wallace [11] refers to this pattern where impatient traders who contact the

intermediary late in the order receive less than those who arrived earlier as a partial suspension of

convertibility.13

Incentive Compatibility. Now suppose the intermediary attempts to implement this efficient al-

location using a direct revelation mechanism. We first check whether this can be done; in other

words, is the efficient allocation incentive compatible? We know that a trader always strictly

prefers to report truthfully when impatient. Therefore, we only need to compare the expected util-

ity of reporting truthfully with that of following the run strategy, which sets μi = 0 regardless of

the trader’s true type. The comparison is presented in Figure 5. The dashed line in the figure de-

picts the gain in expected utility from choosing the run strategy (relative to reporting truthfully) for

each trader under the assumption that all others are reporting truthfully. The fact that the line is be-

low zero everywhere indicates that all traders derive higher utility from reporting truthfully; hence,

there exists a truth-telling equilibrium that implements the efficient allocation in this example.

A Run Equilibrium. Next, we construct another equilibrium of the direct revelation game. In this

equilibrium, the first two traders follow the run strategy while the last two traders report truthfully.

The equilibrium communication strategies are, therefore, given by

μi (ω) =

½
0
ωi

for i = 1, 2
i = 3, 4

¾
. (11)

Lemma 2 (see the appendix) tells us that the strategies in (11) are optimal for traders 3 and 4.

To verify that this strategy profile is indeed an equilibrium, therefore, we only need to show that,

taking the strategies of others as given, both traders 1 and 2 will prefer to mis-report when they are

13 If the first three traders are patient, the intermediary will again realize that a low-probability state has occurred.
In this case, if trader 4 is impatient she will receive a higher-than-usual level of consumption (about 1.5 in the figure).
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Figure 5: Individual incentive to run with correlated types

patient.

Consider first the decision of trader 2. If she is patient, she knows it is very likely that exactly

two of the other traders are impatient. She expects trader 1 to report m1 = 0 regardless of his true

type. It is possible that trader 1 is indeed impatient, which would likely imply that only one of the

remaining traders (3 or 4) is impatient. If trader 2 reports truthfully, in this case only two payments

are likely to be made in period 0 and, therefore, her payment in period 1 will be relatively large

(close to the c1 of the Diamond-Dybvig model).14 Reporting truthfully would then be the best

choice.

If, on the other hand, trader 1 is patient (and, hence, his report is untruthful), then it is very

likely that both traders 3 and 4 will be impatient. In this case, if trader 2 reports truthfully, there

will likely be three payments made in period 0 and the amount left for her in period 1 will be

substantially smaller. If she lies, on the other hand, her report of impatient will be only the second

received by the intermediary and she will receive a larger payment in period 0 (close to the c0 of

Diamond-Dybvig). In this case, lying would be the best response.

Given her beliefs about the likelihood of each of these two cases (which are based on the prob-

ability distribution P updated to include her own private information), trader 2 must decide how

to report. The solid line in Figure 5 presents the gain in expected utility from choosing the run

strategy under the assumption that other traders are following the strategy profile in (11). The fact
14 Of course, it is possible that more than two traders will be impatient, but this risk is of order ε and thus is relatively
unimportant in this example.
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that this line is positive at trader 2 shows that, in this example, behaving in accordance with (11) –

mis-reporting her type when patient – is the optimal choice for trader 2.

The decision problem faced by trader 1 is similar. The fact that the solid line in Figure 5 lies

above zero for him shows that he will also strictly prefer to follow (11) if all other traders are doing

so. Finally, note that the solid line is negative for traders 3 and 4, which confirms that they prefer

to report truthfully even when traders 1 and 2 follow the run strategy. The figure thus shows that

the strategy profile in (11) is indeed an equilibrium for the chosen parameter values.

Intuition. It is interesting to examine the behavior of trader 2 in this example. She chooses to

run even though she believes that both of the traders after her will, following the strategy profile in

(11), report truthfully. This behavior is somewhat surprising in light of the results in Green and Lin

[6, Lemma 5], which show that it cannot arise in the model with independent types. In particular,

Green and Lin demonstrate that, under the efficient allocation rule, a trader who believes everyone

after her will report truthfully strictly prefers to do the same, regardless of the actions of the traders

who contact the intermediary before her. We call this property continuation incentive compatibility

or continuation IC. The key to understanding why the Green-Lin unique implementation result

does not extend to the case of correlated types, therefore, is understanding why the continuation

IC property does not hold for trader 2 under the efficient allocation rule in this example.

The direct revelation game is designed to implement the efficient allocation a∗ if all traders

report truthfully. When the first two traders both report to be impatient, the payment offered to

trader 2 is based on the assessment, derived from the probabilities in (10), that traders 3 and 4 are

very likely to both be patient. As a result of this assessment, trader 2 is offered a relatively large

payment – close to the c0 of the Diamond-Dybvig model. In a sense, when both traders 1 and 2

report to be impatient, the intermediary is “optimistic” that the early withdrawals will end there,

and the payment offered to trader 2 reflects this optimism.

In the run equilibrium, trader 2’s belief about the types of traders 3 and 4 is significantly different

from the assessment described above. Suppose trader 2 is patient. She recognizes that trader 1 will

report to be impatient regardless of his true type. She thus recognizes that, following a withdrawal

by trader 1, there is a significant chance that both traders 3 and 4 will be impatient. Relative to the

assessment used to design the allocation rule, trader 2 is more “pessimistic” about the number of

additional early withdrawals.
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This pessimistic belief makes waiting until period 1 less attractive for trader 2. She knows that

if she reports truthfully and waits to consume, there will almost certainly be at least one more

early withdrawal. Moreover, she believes there is a significant chance that traders 3 and 4 will

both be impatient, in which case the intermediary will face a third early withdrawal. Because the

intermediary considered three early withdrawals to be unlikely ex ante, this event is associated

with a substantial decrease in the payments to all traders who have yet to consume. Trader 2’s

pessimistic belief about the number of early withdrawals thus makes running – and claiming the

period 0 payment based on an unduly optimistic assessment – more attractive. In this way, the

correlation in traders’ types breaks the continuation IC property of the efficient allocation.

Notice that these effects cannot arise when types are independent. In that case, trader 2’s knowl-

edge of her own type and the equilibrium strategy of trader 1 do not provide her with any additional

information about the likely types of traders 3 and 4. Her belief about these types remains iden-

tical to the assessment used to design the efficient payment schedule – each of these traders has

an independent probability π of being impatient. The payments offered by the intermediary are,

therefore, “appropriate” given trader 2’s belief and, as shown by Green and Lin [6], lead trader 2

to strictly prefer truthful reporting.

5.2 Another example

The example presented above is, in some ways, rather special: there are only four traders and there

is almost no uncertainty about the total number of impatient traders. While these features were

useful for generating intuition, they are by no means necessary for the result to obtain. We demon-

strate this fact by presenting an example with 10 traders and a significant amount of aggregate

uncertainty. Many other examples with similar characteristics are possible, of course.

Parameter Values. Let I = 10. The parameter values R = 2 and γ = 6 are unchanged from the

simple example above. Set the density function p for the number of patient traders as follows

p (θ) =
1− ε

5
for θ = 3, . . . 7, and (12)

p (θ) =
ε

6
for θ = 0, 1, 2, 8, 9, 10.

We again choose ε to be very small (we set ε = 0.006% for this example). In other words, this

example is designed so that the number of patient traders is very likely to fall somewhere between
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3 and 7 out of the 10 total traders. We have made each of these possibilities equally likely just for

simplicity. The important feature of the specification here is that it is very unlikely that almost all

of the traders will be impatient; in particular, such events are substantially less likely than in the

case of independent types.

Incentive Compatibility. The efficient allocation is again calculated as in Proposition 1. With the

larger number of traders in this example, the structure of the efficient allocation is more complex

than before; however, using the proposition its calculation remains straightforward. We first ask if

this allocation is incentive compatible. To do so, we again compare the gain in expected utility from

choosing the run strategy for each trader (relative to reporting truthfully) under the assumption that

all other traders report truthfully. This gain is plotted as the dashed line in Figure 6. The fact

that the line is below zero for all traders indicates that the efficient allocation is indeed incentive

compatible in this example.
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Figure 6: Incentive to run in the richer example

A Run Equilibrium. Next, we construct a partial run equilibrium for this example. The basic form

of this equilibrium is the same as in the simple example above: traders who are early in the order

choose to run, while those who are later in the order report truthfully. Specifically, we propose the

following strategy profile as a potential equilibrium

μi (ω) =

½
0
ωi

for i = 1, . . . , 7
i = 8, 9, 10

¾
. (13)
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The solid line in Figure 6 plots the expected gain from following the run strategy (relative to

reporting truthfully) when all other traders are expected to follow the strategies in (13). The figure

shows that this gain is positive for the first seven traders and negative for the last three. In other

words, if each trader believes that all others will follow the strategies in (13), she strictly prefers to

do so as well. The strategy profile (13) is, therefore, an equilibrium of the direct revelation game.

Intuition. As before, the key to understanding why a run equilibrium exists is to examine why

the continuation IC property fails to hold under the efficient allocation rule. In this example, the

behavior of trader 7 is critical. Why does she run even though she anticipates that everyone after

her will report truthfully? The intuition for this behavior is very similar to that for trader 2’s

behavior in the previous example.

When the first seven traders all report to be impatient, the payment given to trader 7 is based

on the assessment – generated using the probabilities in (12) – that the remaining three traders are

very likely to all be patient. As a result, this payment is relatively large, reflecting the “optimistic”

view that further withdrawals in period 0 are unlikely. In the run equilibrium, however, Trader 7

has a more pessimistic belief about the types of the remaining traders and, hence, about the number

of additional withdrawals. She recognizes that the first six traders have reported to be impatient

regardless of their true types and, therefore, she believes it is quite likely that two or even all

three of the remaining traders will be impatient. In such a case, the intermediary would face an

unexpectedly high level of early withdrawals, and traders who have reported to be patient would

receive relatively low levels of consumption. Under this belief, running – and claiming the period

0 payment based on the optimistic assessment – is more attractive than reporting truthfully and

waiting until period 1.

5.3 Discussion

In the Green-Lin model, a trader correctly anticipates the equilibrium strategies of all other traders,

but she does not directly observe their actions. Other approaches are possible, of course, and it may

be interesting to study the extent to which the insights we present here can be applied in related

environments. Andolfatto et al. [2], for example, modify the Green-Lin model by allowing a trader

to observe the reports of the previous traders prior to announcing her type. The set of feasible

allocations is unchanged in this modified environment. The direct revelation game is different,

however, because a trader has more information when she chooses her report. Despite this fact, the
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Green-Lin results continue to hold in the modified environment; the efficient allocation is again

incentive compatible and can be uniquely implemented when types are independent.15

Andolfatto et al. [2] discuss the possibility of constructing run equilibria based on correlated

types in their modified environment, but they do not offer any examples. Constructing equilibria in

their environment is more involved because it requires specifying traders’ beliefs at decision nodes

that lie off the equilibrium path of play, which then raises the issue of the “reasonableness” of those

beliefs according to various equilibrium refinement criteria. They argue that for the special case of

I = 3, any run equilibrium would fail to satisfy a natural refinement like the intuitive criterion. The

logic they describe does not directly apply to examples with a larger number of traders, however.

We study the environment as specified by Green and Lin [6], where traders do not observe

each other’s actions and these issues do not arise. This setting has the advantage of capturing

the essential features of financial intermediation, including the timing of agents’ decisions, in a

parsimonious way. In fact, one of the important contributions of Green and Lin [6] is to show

how a banking model with dynamic elements – and which allows the use of backward-induction

reasoning – can be formulated as an essentially static (simultaneous-move) game. Whether our

techniques, as illustrated in the examples above, can be applied to generate robust partial-run

equilibria in environments like that in Andolfatto et al. [2] is an interesting question for future

research.

6 Concluding Remarks

Observers frequently claim that runs on banks and other financial intermediaries are driven

largely by self-fulfilling beliefs. Because these events typically occur during periods of financial

turmoil, determining their underlying causes empirically has proven difficult. It is, therefore, useful

to ask whether self-fulfilling runs are theoretically plausible, in the sense of being equilibrium

outcomes of a reasonable economic model. Green and Lin [6] derive a remarkable result in this

respect: in their version of the classic Diamond-Dybvig model, an intermediary can generate the

efficient allocation of resources without introducing the type of self-fulfilling runs that appeared in

the earlier literature.

15 In fact, Andolfatto et al. [2] prove that any allocation satisfying incentive compatibility in the modified en-
vironment can be uniquely implemented when types are independent. They also show that this result holds for
a broader set of preferences than studied in Green and Lin [6].
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The Green-Lin model incorporates the basic elements that are commonly believed to open to

the door to self-fulfilling runs, including illiquidity, private information, and sequential service.

Their key departure from the existing literature is to assume that an individual has some infor-

mation about where things stand when her opportunity to withdraw arrives. They show how this

information can have a large effect in equilibrium. For an individual whose opportunity to with-

draw comes very late, this information eliminates her incentive to run on the intermediary. Using

a backward induction argument, they then show how the incentives for the remaining individuals

to run unravel.

One might be tempted to infer from this logic that self-fulfilling run equilibria are necessarily an

artifact of arbitrary modeling restrictions. In particular, one might think that run equilibria simply

cannot occur in an environment in which (i) individuals are able to condition their decisions on

their order of arrival at the intermediary and (ii) the payment schedule takes full advantage of

the information available to the intermediary. We show that this is not the case. To do so, we

change the Green-Lin model in only one respect: we allow for liquidity needs to be correlated

across agents. We then construct equilibria in which some agents run on the intermediary. Our

results show that it is difficult to dismiss the possibility of self-fulfilling runs on purely theoretical

grounds.16

In the model we have presented here, two distinct types of crises can occur in equilibrium. In

addition to a self-fulfilling run, the economy can experience a “fundamentals” crisis in which a

large fraction of the population has immediate liquidity needs. Interestingly, an outside observer

would have great difficulty distinguishing between these two types of crises. In both cases, in-

dividuals who withdraw late receive much lower consumption than those who withdrew earlier.

Determining the underlying cause of a particular crisis is made particularly difficult by a new fea-

ture of our equilibrium construction: self-fulfilling runs here are partial, with only some agents

participating. Despite this difficulty, the model has a key empirical prediction: the incidence of

crises can be higher than would be warranted by the behavior of economic fundamentals alone.

We did not study how the intermediary would react to this higher probability of crises, but doing

so would be fairly straightforward. To address this issue, the analysis would need to be expanded

16 Modifying the Green-Lin model in other ways is likely to yield additional insights, both about the potential for self-
fulfilling runs and about the structure of financial intermediation in general. Andolfatto and Nosal [1], for example,
introduce a self-interested intermediary into the Green-Lin framework and study how this modification affects the
optimal allocation rule and the potential for self-fulfilling runs, concluding it is not a potential source of the latter.
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to include the intermediary as a player in the game. This step has been taken in related models in

the existing literature and the results of such an exercise are now well known. (See, for example,

Cooper and Ross [3], Peck and Shell [9], and Ennis and Keister [5].) A run typically cannot

occur with certainty in an equilibrium of the expanded game, because the intermediary would then

choose a rule under which truth-telling is the unique equilibrium. If the ex ante probability of a

run is small enough, however, the intermediary will choose to follow an allocation rule close to the

efficient rule studied here. A partial run can then be consistent with equilibrium, as we have shown.

Following the steps in the existing literature, one could then construct a correlated equilibrium of

the overall game in which a partial run – based on the strategies identified in this paper – occurs

with positive probability.

Appendix A. Proofs

Lemma 1: Under (2), θi (ωi) = θi
¡bωi
¢

implies both

P
¡
ωi
¢
= P

¡bωi
¢

and

P
¡
ωi, ωI−i¢ = P ¡bωi, ωI−i¢ for all ωI−i.

Proof. We begin with the second part. Let θI−i denote the number of patient traders in the contin-

uation history ωI−1. Then, using (2), we can write

P
¡
ωi, ωI−i¢ =

p
¡
θi (ω

i) + θI−i
¡
ωI−i¢¢

C (I, θi (ωi) + θI−i (ωI−i))

=
p
¡
θi
¡bωi
¢
+ θI−i

¡
ωI−i¢¢

C
¡
I, θi

¡bωi
¢
+ θI−i (ωI−i)

¢
= P

¡bωi, ωI−i¢ ,
where the second equality follows from the hypothesis of the lemma and the final equality from
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(2). This result allows us to establish the first as follows:

P
¡
ωi
¢
=

X
ωI−1∈ΩI−i

P
¡
ωi, eωI−i¢

=
X

ωI−1∈ΩI−i
P
¡bωi, eωI−i¢

= P
¡bωi
¢
.

¥

Proposition 1: The efficient allocation when all traders contact the intermediary in period 0 sets

a0i =
yi−1

ψi (θi−1)
1
γ + 1

for i = 1, . . . , I,

where yi−1 = I −
P

j<i a
0
j and the functions ψi are defined recursively by ψI (x) =

³
xR

1−γ
γ

´γ
and

ψi (x) = πi+1 (x)
³
ψi+1 (x)

1
γ + 1

´γ
+ (1− πi+1 (x))ψi+1 (x+ 1)

for i = 1, . . . , I − 1.

Proof. Let V 0
i denote the sum of the expected utilities of all traders who have not yet consumed

when the intermediary encounters trader i, conditional on trader i being impatient and the interme-

diary dividing the available resources yi−1 efficiently among these traders. Specifically, this sum

includes the utility levels of trader i, all traders after i in the sequence, and all traders before i who

are patient and thus will consume in period 1. Let V 1
i denote this same sum of expected utilities

conditional instead on trader i being patient. These two value functions must satisfy the following

recursive equations:

V 0
i (yi−1, θi−1) = max{a0i}

⎧⎪⎨⎪⎩
(a0i )

1−γ

1−γ + πi+1 (θi−1)V
0
i+1 (yi−1 − a0i , θi−1)+

(1− πi+1 (θi−1))V
1
i+1 (yi−1 − a0i , θi−1)

⎫⎪⎬⎪⎭ (14)

and

V 1
i (yi−1, θi−1) =

⎧⎨⎩ πi+1 (θi−1 + 1)V
0
i+1 (yi−1, θi−1 + 1)+

(1− πi+1 (θi−1 + 1))V
1
i+1 (yi−1, θi−1 + 1)

⎫⎬⎭ (15)

for i = 1, . . . I. The function πi (θ) in these equations represents the probability that ωi = 0
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conditional on θ of the first i− 1 traders being patient.

After the intermediary has encountered all I traders in period 0 and given consumption to the

impatient ones, it will divide the remaining resources yI , augmented by the returnR, evenly among

the θI patient traders in period 1. We therefore have the following terminal condition

V 0
I+1 (yI , θI) = V 1

I+1 (yI , θI) =
θI
1− γ

µ
RyI
θI

¶1−γ
.

The combination of this equation, the initial conditions y0 = I and θ0 = 0, and (14) and (15) con-

stitutes the dynamic programming problem whose solution gives the efficient payment schedule.

As is typical in finite dynamic programming problems, we start by solving the last decision

problem the intermediary faces. Suppose trader I is impatient. Then, given θI−1 and yI−1, the

maximization problem in (14) reduces to

max
{a0I}

(a0I)
1−γ

1− γ
+

θI−1
1− γ

µ
R (yI−1 − a0I)

θI−1

¶1−γ
.

The solution to this problem sets

a0I (yI−1, θI−1) =
yI−1

ψI (θI−1)
1
γ + 1

,

where

ψI (x) ≡
³
xR

1−γ
γ

´γ
. (16)

Substituting the solution back into the objective function and doing some straightforward algebra

yields the value function

V 0
I (yI−1, θI−1) =

(yI−1)
1−γ

1− γ

³
ψI (θI−1)

1
γ + 1

´γ
.

If, on the other hand, trader I is patient, all of yI−1 is carried into period 1 and the value function

is given by

V 1
I (yI−1, θI−1) = (θI−1 + 1)

1

1− γ

µ
RyI−1
θI−1 + 1

¶1−γ
,

which can also be written as

V 1
I (yI−1, θI−1) =

(yI−1)
1−γ

1− γ
ψI (θI−1 + 1) .
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It is straightforward to use this same procedure to show that, for any trader i < I, the solution

to the maximization problem in (14) sets

a0i =
yI−1

ψi (θi−1)
1
γ + 1

,

where

ψi (x) = πi+1 (x)
³
ψI+1 (x)

1
γ + 1

´γ
+ (1− πi+1 (x))ψI+1 (x+ 1) .

Note that, together with the “terminal” value ψI in (16), Eq. (7) can be used recursively to deter-

mine ψi (θi−1) for any values of i and θi−1. The associated value functions are

V 0
i (yi−1, θi−1) =

(yi−1)
1−γ

1− γ

³
ψi (θi−1)

1
γ + 1

´γ
and

V 1
i (yi−1, θi−1) =

(yi−1)
1−γ

1− γ
ψi (θi−1 + 1) . ¥

Lemma 2 Under the mechanism α∗, reporting truthfully (that is, the strategy μi = ωi) is a strictly
dominant strategy for traders I and I − 1.

Proof. We already know that reporting truthfully is strictly preferred if a trader is impatient, so we

only need to consider the case where each trader is patient. Consider first trader I . For any level of

remaining resources yI−1, the efficient allocation gives her the following payments depending on

her report:
lie: yI−1

ψI(θI−1)
1
γ +1

where ψI (θI−1) =
³
θI−1R

1−γ
γ

´γ
truth: RyI−1

θI−1+1

.

Truth-telling is strictly preferred if

R

θI−1 + 1
>

1

θI−1R
1−γ
γ + 1

=
R

θI−1R
1
γ +R

or if

θI−1R
1
γ +R > θI−1 + 1.

Since R > 1 and γ > 0, this condition holds for all θI−1 ≥ 0. In other words, trader I strictly
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prefers to report truthfully regardless of the reports of other traders.

Next, consider the decision problem of trader I − 1 in the event that he is patient. Let φ denote

the probability he places on trader I reporting impatient. Then for a given level yI−2 of remaining

resources, the expected utility of trader I − 1 under α∗ is

lie: 1
1−γ

¡
a0I−1 (yI−2, θI−2)

¢1−γ
truth: φ 1

1−γ

µ
R(yI−2−a0I(yI−2,θI−2+1))

θI−2+1

¶1−γ
+ (1− φ) 1

1−γ

³
RyI−2
θI−2+2

´1−γ
where a0I−1 and a0I are as derived in Section 3. It is straightforward to show that

RyI−2
θI−2 + 2

>
R (yI−2 − a0I (yI−2, θI−2 + 1))

θI−2 + 1

holds for all yI−2 and all θI−2 (substitute in for a0I and simplify). In other words, if trader I − 1
reports patient, her consumption will be higher if trader I also reports patient than if the latter

reports impatient. The claim will be proven, therefore, for any value of φ if we can show

R (yI−2 − a0I (yI−2, θI−2 + 1))

θI−2 + 1
> a0I−1 (yI−2, θI−2) ,

which can be reduced to

R
1
γ

(θI−2 + 1)R
1−γ
γ + 1

>
1³

pI (θI−2)
³
θI−2R

1−γ
γ + 1

´γ
+ (1− pI (θI−2))

³
(θI−2 + 1)R

1−γ
γ

´γ´ 1
γ

+ 1

Since γ > 0 and R > 1, we have

θI−2R
1−γ
γ + 1 > (θI−2 + 1)R

1−γ
γ

which implies that the denominator on the right-hand side is larger than that on the left-hand side.

Since R
1
γ > 1, the numerator on the left-hand side is larger, and hence the condition must hold.

These calculations show that the consumption trader I− 1 receives in period 1 if he reports patient

is greater than the consumption he receives in period 0 if he reports impatient, even if trader I

is certain to report impatient and independent of the reports of all previous traders. Therefore,

reporting truthfully is also a strictly dominant strategy for trader I − 1. ¥
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