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Abstract

We study how banking panics unfold in a version of the Diamond
and Dybvig (1983) model with limited commitment. In our model, a
policy maker with full commitment power could costlessly eliminate the
possibility of a run on the banking system. When the policy maker’s ability
to commit is limited, however, self-fulfilling runs easily arise. We construct
equilibria in which depositors run on the banking system with positive
probability and we show that a bank run in this setting is necessarily partial,
with only some depositors participating. We also show that a run naturally
occurs in waves, with each wave of withdrawals prompting a further policy
response from the banking authority. In this way, the interplay between
the actions of depositors and the responses of the policy maker shapes the
course of the crisis.
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1 Introduction

Recent events have renewed interest in studying how policy makers respond to banking panics

and related events. Several episodes during the current financial crisis have been compared to

“old fashioned” banking panics; examples include the collapse of the market for asset-backed

commercial paper in 2007, the near-failure of the investment bank Bear Stearns in March 2008,

and the surge of withdrawals from money market mutual funds in September 2008, to name only

a few. Each of these events led to a reaction by policy makers in central banks and in government.

Moreover, traditional bank runs – where retail depositors rush to withdraw from their local banks –

remain a major issue in some economies, as demonstrated by events in Argentina (in 2001), Russia

(in 2004) and elsewhere. Policy makers respond to these events as well, often by freezing deposits

and/or rescheduling the liabilities of the banking sector.

Investors anticipate that policy makers will respond to a crisis, of course, and the anticipated

response influences their behavior. We study the interplay between investor’s decisions and the

responses of policy makers in a version of the Diamond and Dybvig (1983) model of bank runs

with limited commitment. The assumption of limited commitment seems particularly appropriate

for studying bank runs and other crisis; it amounts to assuming that policy makers cannot credibly

promise to refrain from intervening when an (ex post) improvement in resource allocation is pos-

sible. We use the model to examine the essential trade-offs facing policy makers during a banking

panic and we derive the time-consistent banking policy in equilibrium. We show that a lack of pol-

icy commitment can play an essential role in both allowing self-fulfilling banking panics to arise

and in determining the pattern that such panics follow.

The previous literature has assumed, often implicitly, that policy makers can commit to follow a

specific course of action in the event of a crisis. To see why the issue of commitment is important,

consider the standard version of the Diamond-Dybvig model with no aggregate uncertainty. Indi-

vidual agents are unsure about when they will need to consume and, therefore, pool their resources

in a bank for insurance purposes. In an environment with commitment, a benevolent banking

authority sets a payment schedule – a complete specification of how much each depositor who

withdraws early will receive – before depositors make their withdrawal decisions. By threatening

to freeze all remaining deposits if too many depositors withdraw early, this authority can guarantee
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the solvency of the banking system. When solvency is guaranteed, it is a dominant strategy for

each depositor to wait to withdraw unless she truly needs to consume early. Hence, commitment

to an appropriate course of action can rule out the possibility of a banking panic and ensure the

efficient outcome.1

We study this same model, but in an environment where the banking authority cannot pre-

commit to a course of action. Instead, it will respond optimally to whatever situation arises. When

faced with a run in this environment, the banking authority will not choose to freeze all remaining

deposits, because doing so would deny consumption to some agents who have a true need to

consume early.2 The optimal response is to allow additional withdrawals, but at a discount to their

face value. The appropriate discount depends on how the banking authority expects the remaining

depositors to behave. The behavior of these remaining depositors, in turn, is influenced by the

level of the discount imposed by the banking authority. The banking authority and all depositors

fully anticipate and optimally react to each others’ behavior in our model. The equilibrium pattern

of withdrawals and discounts is thus determined by the interplay between depositors’ withdrawal

decisions and the responses of the banking authority.

We show that when depositors are sufficiently risk averse, there exists an equilibrium of the

model in which a bank run occurs with positive probability. Despite the simplicity of the environ-

ment, the structure of the equilibrium we construct is surprisingly rich. The initial run is necessarily

partial, with only some depositors participating. Once the number of early withdrawals passes a

certain threshold, the banking authority realizes that a run is underway and imposes a discount on

all further early withdrawals. The run may halt at this point or it may continue, leading the banking

authority to announce another, more severe discount on withdrawals. A bank run thus occurs in

“waves,” with each wave of withdrawals prompting a further reaction by the banking authority.

The number of waves that occur in equilibrium is stochastic and can be arbitrarily large.

This dynamic “wave” structure is fundamentally different from the type of bank run studied

in the previous literature, where depositors run either en masse or not at all. After the first wave

1 In a related model, de Nicolò (1996) shows how run equilibria can be ruled out under commitment without freezing
deposits by using a priority-of-claims provision on final date resources. Deposit freezes (sometimes called suspensions
of convertibility) have been studied in similar settings by Gorton (1985), Chari and Jagannathan (1988), and Engineer
(1989).
2 In earlier work (Ennis and Keister, 2009a), we showed that a full deposit freeze is not ex post efficient in the
event of a run. We also discussed institutional features that often shape a government’s response to a run, with
a focus on events in Argentina in 2001-2 and other recent banking crises.
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of early withdrawals, the banking authority in our model is able to infer that a partial run has

taken place, but it does not know whether the run will continue. The structure of the equilibrium

is such that, at each decision point, the banking authority is optimistic that the run has ended.

This optimism leads it to offer a relatively high degree of risk sharing to the remaining depositors,

which, in turn, leaves the banking system susceptible to a continued run. In this way, our model

suggests that the combination of a lack of commitment together with optimism on the part of policy

makers during a crisis may lie at the root of the problem of self-fulfilling runs. We believe this is a

new and potentially important insight into the fundamental causes of financial fragility.

Our analysis contributes to a small but growing literature on discretionary policy and multiple

equilibria. Most of the work on issues related to time inconsistency has studied situations where

the inability of a policy maker to commit leads to an inefficient outcome in the unique equilibrium.

In our setting, the efficient outcome is always an equilibrium. A policy maker with commitment

power can rule out other (i.e., bank run) equilibria, but a lack of commitment power allows such

equilibria to arise. Hence, our analysis is more in line with the flood control example in Kydland

and Prescott (1977). In that example, a commitment to not invest in flood control would convince

private agents to not build on a flood plain. However, if the policy maker cannot commit, there is

an equilibrium in which agents build on the flood plain and, as a result, the policy maker ends up

investing in flood control.3 This second type of inefficiency resulting from a lack of commitment

power has been studied in the context of fiscal policy by Glomm and Ravikumar (1995) and in

the context of monetary policy by Albanesi, et al. (2003) and King and Wolman (2004). Our

analysis shows how these same forces naturally generate self-fulfilling bank run equilibria in the

well-known Diamond-Dybvig framework and that these equilibria have a rich dynamic structure.

The rest of the paper is organized as follows. In the next section, we describe the environment

and the definition of equilibrium in both the commitment and the no-commitment case. We briefly

analyze equilibrium in the commitment case in Section 3, showing that bank runs never occur

and the first-best allocation always obtains. Section 4 contains the main result: a construction of

bank run equilibria in the no-commitment case, while Section 5 illustrates the properties of these

equilibria. We offer some concluding remarks in Section 6.

3 See King (2006) for a more formal analysis of this problem.
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2 The Model

We work with a fairly standard version of the Diamond-Dybvig model that includes an explicit

sequential service constraint. We begin by describing the physical environment and the first-best

allocation of resources in this environment.

2.1 The environment

There are three time periods: t = 0, 1, 2. There is a continuum of agents, whom we refer to as

depositors, indexed by i ∈ [0, 1]. Each depositor has preferences given by

u (c1, c2; θi) =
(c1 + θic2)

1−γ

1− γ
,

where ct is consumption in period t and θi is a binomial random variable with support Θ = {0, 1}.
As in Diamond and Dybvig (1983), we assume that the coefficient of relative risk aversion γ is

greater than 1. If the realized value of θi is zero, depositor i is impatient and only cares about con-

sumption in period 1. A depositor’s type θi is revealed to her in period 1 and is private information.

Let π denote the probability with which each individual depositor will be impatient. By a law of

large numbers, π is also the fraction of depositors in the population who will be impatient.4 Note

that π is non-stochastic; there is no aggregate (intrinsic) uncertainty in this model.

The economy is endowed with one unit of the good per capita in period 0. As in Diamond

and Dybvig (1983), there is a single, constant-returns-to-scale technology for transforming this

endowment into consumption in the later periods. A unit of the good invested in period 0 yields

R > 1 units in period 2, but only one unit in period 1.

There is also a banking technology that allows depositors to pool resources and insure against

individual liquidity risk. The banking technology is operated in a central location. As in Wallace

(1988, 1990), depositors are isolated from each other in periods 1 and 2 and no trade can occur

among them. However, each depositor has the ability to visit the central location once, either in

period 1 or in period 2 and, hence, a payment can be made to her from the pooled resources after

her type has been realized. We refer to the act of visiting the central location as withdrawing from

the banking technology.

4 There are well-known technical issues associated with the formal statement of the law of large numbers in an
economy with a continuum of agents. We ignore the technical details here and refer the reader to Al-Najjar (2004) for a
discussion, references, and a possible way to deal with such issues.
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Depositors’ types are revealed in a fixed order determined by the index i; depositor i discovers

her type before depositor i0 if and only if i < i0. A depositor knows her own index i and, therefore,

knows her position in this ordering.5 Upon discovering her type, each depositor decides whether

or not to visit the central location in period 1. If she does, she must consume immediately; the

consumption opportunity in period 1 is short-lived. This implies that the payment a depositor

receives from the banking technology cannot depend on any information other than the number

of depositors who have withdrawn prior to her arrival. In particular, it cannot depend on the total

number of depositors who will withdraw in period 1, since this information is not available when

individual consumption must take place. This sequential-service constraint follows Wallace (1988,

1990) and captures an essential feature of banking: the banking system pays depositors as they

arrive to withdraw and cannot condition current payments to depositors on future information.

Under sequential service, the payments made from the banking technology in period 1 can be

summarized by a function x : [0, 1] → R+, where the number x (μ) is the payment given to the

μth depositor to withdraw in period 1. Note that the arrival point μ of a depositor depends not

only on her index i but also on the actions of depositors with lower indexes. In particular, μ will

be strictly less than i if some of these depositors choose not to withdraw in period 1. In period

2, we can, without loss of generality, set the payment to each depositor equal to an even share of

the matured assets in the banking technology.6 Therefore, the operation of the banking technology

is completely described by the function x, which we call the banking policy. Feasibility of the

banking policy requires that total payments in period 1 not exceed the short-run value of assets,

even if all depositors choose to withdraw in that period, that is,Z 1

0

x (μ) dμ ≤ 1. (1)

We summarize the behavior of depositor i by a function yi : Θ→ {0, 1} that assigns a particular

action to each possible realization of her type. Here yi = 0 represents withdrawing in period 1 and

yi = 1 represents waiting until period 2. We refer to the function yi as the withdrawal strategy of

5 This construction follows Green and Lin (2000) and is a simplified version of that in Green and Lin (2003). None
of our results depend on the assumption that depositors know this ordering. The same results would obtain if depositors
made their withdrawal decisions before this ordering is realized (as in Diamond and Dybvig 1983, Peck and Shell 2003,
and others), but the details would be more complex in some cases.
6 In principle, some type of payment schedule could be applied in period 2 as well. However, since depositors are risk
averse and all information about their actions has been revealed at this point, it will always be optimal to divide
the assets evenly among the remaining patient depositors. Importantly, the type of priority-of-claims provision studied
in de Nicolò (1996) would never be used in a setting without commitment because it is ex post inefficient.
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depositor i, and we use y to denote the profile of withdrawal strategies for all depositors.

An allocation in this environment consists of an assignment of consumption levels to each

depositor in each period. An individual depositor’s consumption is completely determined by the

banking policy x, the profile of withdrawal strategies y, and the realization of her own type θi. We

can, therefore, define the (indirect) expected utility of depositor i as a function of x and y, that is,

vi (x, y) = E [u (c1,i, c2,i; θi)] ,

where E represents the expectation over θi. Define U to be the integral of all depositors’ expected

utilities, i.e.,

U (x, y) =

Z 1

0

vi (x, y) di. (2)

This expression can be given the following interpretation. Suppose that, at the beginning of period

0, depositors are assigned their index i randomly, with each depositor having an equal chance of

occupying each space in the unit interval. Then U measures the expected utility of each depositor

before places are assigned. We use U as our measure of aggregate welfare throughout the paper.

2.2 The first-best allocation

Consider the problem of a benevolent social planner who can observe depositors’ types and can

directly control both the banking technology and the withdrawal decisions of depositors. This

planner would choose the variables x and y to maximize U subject to the feasibility constraint

in (1). In other words, the planner will choose how much and in which period each depositor

consumes, contingent on types and subject to the sequential service restriction described above.

We call the allocation this planner would generate the (full information) first best.

The solution to this problem parallels that in the standard Diamond-Dybvig model. First, note

that the planner would direct all impatient depositors to withdraw in period 1 and all patient de-

positors to withdraw in period 2; that is, the planner would set

yi (θi) = θi for all i.

Furthermore, because depositors are risk averse and there is no aggregate uncertainty, depositors

of a given type will all receive the same amount of consumption. Let c1 denote the level of con-

sumption provided to impatient depositors and c2 the level of consumption provided to patient
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depositors. These numbers will be chosen to solve

max
{c1,c2}

π
(c1)

1−γ

1− γ
+ (1− π)

(c2)
1−γ

1− γ
(3)

subject to
(1− π)c2 = R (1− πc1) .

As is well known, the solution will satisfy c∗2 > c∗1 > 1. The payment schedule associated with the

first-best allocation then sets7

x (μ) = c∗1 for all μ ∈ [0, π] . (4)

Note that the first-best allocation described here is the same allocation the planner would choose

in an environment without the sequential service constraint, where it could first observe all depos-

itor’s types and then assign a consumption allocation. In our setting, where there is no aggregate

uncertainty, the sequential service constraint is non-binding in the planner’s problem. However,

as we discuss below, the constraint is an important restriction in the decentralized economy where

types are private information.

2.3 The depositors’ game

In the decentralized economy, each depositor chooses her withdrawal strategy as part of a non-

cooperative game. It will often be useful to fix the banking policy x and look at the game played

by depositors under that particular policy. Let y−i denote the profile of withdrawal strategies for

all depositors except i. An equilibrium of this game is then defined as follows.

Definition 1: Given a policy x, an equilibrium of the depositors’ game is a profile of strategiesby (x) such that
vi (x, (by−i, byi)) ≥ vi (x, (by−i, yi)) for all yi, for all i.

Because they are isolated, depositors do not directly observe each others’ actions. Therefore, even

though these actions take place sequentially, we can think of depositors as choosing their strategies

simultaneously. This approach, which captures the dynamic features of sequential service in an

essentially static game, was introduced by Green and Lin (2003); see Ennis and Keister (2009b)

for a detailed discussion.

7 Since only the π impatient depositors will withdraw in period 1, the payments for μ > π will not occur and need not
be specified.
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The depositors’ game has been the focus of the literature on bank runs since Diamond and

Dybvig (1983). For some policies x, this game may not have a unique equilibrium.8 We use bY (x)

to denote the set of equilibria associated with the policy x. We say that a bank run occurs in an

equilibrium by if more than π depositors withdraw in period 1. Since all impatient depositors will

choose to withdraw in period 1, a run occurs if and only if some patient depositors withdraw early,

i.e., byi (1) = 0 for a positive measure of depositors.

2.4 The overall banking game

Our interest is in the interaction between depositors’ withdrawal decisions and the banking policy

summarized by the function x. We assume this policy is chosen by a benevolent banking authority,

whose objective is to maximize the welfare function U . The banking authority is a reduced-form

representation of the entire banking system of the economy, together with any regulatory agencies

and other government entities that have authority over the banking system. Our analysis would

be exactly the same if there were a group of profit-maximizing banks competing for deposits in

period 0 and if the authority to reschedule payments in period 1 were held by the (benevolent)

government. To keep the presentation simple, and in line with the previous literature, we present

the model with this system represented by a single, consolidated entity.

We also follow the literature in permitting depositors’ withdrawal decisions to be conditioned

on an extrinsic “sunspot” variable that is not observed by the banking authority.9 We assume,

without any loss of generality, that the sunspot variable is uniformly distributed on S = [0, 1].

Each depositor then chooses a strategy yi : Θ×S → {0, 1} in which her action is a function of the

sunspot state. In equilibrium, the banking authority correctly anticipates the profile of withdrawal

strategies y but may not initially know the profile of actions because it does not observe the sunspot

state s. In particular, the banking authority may not know whether a run is underway until it has

observed enough actions to infer the state.

We begin our analysis with the total endowment of the economy deposited in the banking tech-

nology. One can show that if agents were allowed to choose how much of their private endowment

to deposit, they would strictly prefer to deposit everything in the banking system as long as the

8 The global games approach of Carlsson and van Damme (1993) has been applied in a variety of settings to generate
a unique equilibrium in this type of coordination game. As is clear from Goldstein and Pauzner (2005), however,
applying this approach to the Diamond-Dybvig environment requires making strong assumptions about the investment
technology and placing ad hoc restrictions on the banking policy.
9 See Diamond and Dybvig (1983), Cooper and Ross (1998), and Peck and Shell (2003).
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probability of a run is low enough. In this way, our approach is without any loss of generality.

In the overall banking game, the banking authority chooses the policy x to maximize welfare

U and each depositor chooses her withdrawal strategy yi to maximize her expected utility vi. The

precise definition of equilibrium in this game depends crucially on whether the banking authority

commits to the policy before depositors choose their strategies.

2.5 Definitions of equilibrium

We now present the definition of equilibrium in the overall banking game for the environments

both with and without commitment, beginning with the former.

The environment with commitment. We say that the banking authority has commitment if it

chooses the entire policy x before depositors make their withdrawal decisions and cannot change

any part of the policy later. The previous literature has implicitly assumed commitment. Wallace

(1988), for example, views the banking location as a cash machine that is programmed in advance

to follow a particular payment schedule. Depositors observe the policy x and, therefore, the de-

positors’ game is a proper subgame of the “overall” banking game. The focus is, naturally, on

subgame perfect equilibria, where the banking authority sets a policy x with the knowledge that,

in each state s, the withdrawal strategies will correspond to an equilibrium of the depositors’ game

generated by x. If there are multiple equilibria of the depositors’ game, the banking authority must

have an expectation about which equilibrium will be played; equilibrium of the overall game then

requires that this expectation be correct.

We represent the banking authority’s expectation of depositors’ play by a selection by (x, s)

from bY (x) , that is, a function with by (x, s) ∈ bY (x) for all x and all s. In other words, the

banking authority expects that if it chooses policy x, depositors will play by (x, s) in state s. An

equilibrium of the overall banking game obtains when the banking authority’s policy choice is

welfare maximizing given its expectation of depositors’ play and, given this choice, the expectation

is fulfilled. We formally define an equilibrium of the overall game with commitment as follows.

Definition 2: An equilibrium with commitment of the (overall) banking game is a pair (x∗, y∗) ,

together with a selection function by (x, s) ∈ bY (x) for all x and s, such that
(i) y∗ (s) = by (x∗, s) for each s, and

(ii)
R 1

0
U (x∗, y∗ (s)) ds ≥

R 1

0
U (x, by (x, s)) ds for all x.
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This definition can be viewed as a type of correlated equilibrium, using a particular correlating

device (which we label ‘sunspots’) that is asymmetrically observed by depositors and the banking

authority. See Peck and Shell (1991) for this interpretation of correlated equilibrium.

The environment without commitment. In an environment without commitment, the banking

authority is not able to irrevocably set the payment schedule before depositors choose their with-

drawal strategies. Instead, the payment x (μ) is finally determined only when it is actually made.

This approach captures important features of reality. While a banking contract is generally agreed

on when funds are deposited, governments routinely reschedule payments during times of crisis.

The assumption of the no-commitment case is that the rescheduling plan cannot be fixed in ad-

vance; it will be chosen as a best response to whatever situation the banking authority finds itself

facing. It is worth emphasizing that the banking authority in our model is completely benevo-

lent; its objective is always to maximize the welfare function U . The assumption in this case is

simply that the government is unable to commit not to intervene if a crisis is underway and an

improvement in resource allocation is possible.

We formalize the notion of a lack of commitment power in the following way. When choosing

a payment x (μ) for some μ > 0, the banking authority recognizes that, at the point this payment is

made, the actions of all depositors in the order up to (and including) the current one have already

been taken. Clearly these actions cannot be influenced by the choice of payment x (μ) . Moreover,

the banking authority cannot commit to any payments to later depositors, nor will the choice of

x (μ) affect these future payments.10 The banking authority thus considers the strategies of the

remaining depositors to be independent of its choice of x (μ). In other words, in the environment

without commitment, the banking authority chooses each payment x (μ) taking the entire strategy

profile y∗ as given. This is a standard formulation of a policy game without commitment; see, for

example, the discussion in Cooper (1999, p.137).

The definition of equilibrium for the environment without commitment is, therefore, as follows.

10 With a continuum of depositors, the payment to one individual has a negligible effect on total resources and,
hence, on the banking authority’s subsequent decision problems. Furthermore, the isolation of depositors implies
that only the individual receiving the payment x (μ) directly observes the amount paid; all other depositors must
infer the payment using the structure of equilibrium. Hence the banking authority cannot use changes in x (μ) as a
“signal” aimed at influencing the behavior of depositors who have not yet learned their types and whose payments have
not yet been determined.
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Definition 3: An equilibrium without commitment of the (overall) banking game is a pair (x∗, y∗)

such that
(i) y∗ (s) ∈ bY (x∗) for all s, and

(ii)
R 1

0
U (x∗, y∗ (s)) ds ≥

R 1

0
U (x, y∗ (s)) ds for all x.

Notice the small but important difference between Definitions 2 and 3. In the environment with

commitment, the banking authority recognizes that a change in its policy will lead to a change in

the behavior of depositors as specified in the function by. Without commitment, in contrast, the

banking authority takes the strategies of depositors as given and must choose a best response to

these strategies.

In other words, with commitment the banking authority can threaten drastic action (such as

freezing all remaining deposits) when faced with a run and depositors know that this threat will be

carried out if necessary. Removing the assumption of commitment imposes a form of credibility

on the banking authority’s threats; a threatened action will be deemed credible by depositors only

if it is actually the banking authority’s best response when faced with a run. In this way, our

approach involves applying the time consistency notion of Kydland and Prescott (1977) to policies

that potentially lie off of the equilibrium path of play.11

3 Equilibrium with Commitment

Diamond and Dybvig (1983) showed that the depositors’ game associated with a simple demand-

deposit contract has an equilibrium that achieves the first-best allocation of resources. In particular,

they studied the policy

x (μ) =

½
c∗1 for μ ∈ [0, bμ]
0 otherwise

¾
with bμ = (c∗1)

−1 , (5)

which offers the amount c∗1 to any depositor withdrawing in period 1 as long as the bank has funds.

If all patient depositors wait until period 2 to withdraw, this policy will give each of them c∗2 > c∗1

and, hence, each would choose to wait. The central point of their paper was that the policy in (5)

generates another equilibrium of the depositors’ game in which all depositors attempt to withdraw

11 The related work of Bassetto (2005) is also concerned with the specification of government policy along potentially
off-equilibrium paths and shows how multiplicity of equilibria is more common than previously thought. His approach,
however, assumes commitment and only requires that announced policies be feasible along all possible paths of play.
Condition (1) ensures feasibility in our setup; in particular, freezing deposits is always feasible. For us, the ability
(or inability) to commit to a policy is the critical issue.
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in period 1; those who arrive before the bank runs out of funds receive c∗1, while those who arrive

later (or who deviate and wait until period 2) receive nothing. This outcome resembles a run on

the banking system and would lead to an inefficient allocation of resources.

Could a run occur in an equilibrium of the overall banking game with commitment? Diamond

and Dybvig (1983) provided a partial answer to this question by showing how a deposit freeze

policy could render the first-best allocation the unique equilibrium outcome of the depositors’

game. Suppose that instead of following (5), the banking authority sets

x (μ) =

½
c∗1 for μ ∈ [0, π]
0 otherwise

¾
. (6)

In other words, suppose the banking authority announces that after paying c∗1 to a fraction π of

depositors in period 1, it will close its doors and refuse to serve any more depositors until period

2. Then a patient depositor will know that, regardless of how many people attempt to withdraw in

period 1, the banking authority will have enough resources to pay her at least c∗2 in period 2. Since

c∗2 > c∗1 holds, waiting to withdraw is a strictly dominant strategy for a patient depositor, and the

only equilibrium of the depositors’ game has yi (θi) = θi for all i, independent of the sunspot state.

This policy thus costlessly eliminates the possibility of a bank run.

The above reasoning implies that any equilibrium of the overall banking game with commit-

ment must lead to the first-best consumption allocation, with impatient depositors receiving c∗1 and

patient depositors receiving c∗2 in all states. The banking authority’s equilibrium policy x∗ is not

uniquely defined, because many policies beside (6) will lead to the same result. In fact, the original

Diamond-Dybvig policy (5) is also consistent with such an equilibrium, since it yields the same

payoffs as (6) if no depositor runs. However, any profile of withdrawal strategies that has a posi-

tive measure of patient depositors withdrawing early in some states of nature is inconsistent with

equilibrium, since the banking authority could raise welfare by switching to (6).

Proposition 1 The first-best allocation obtains in any equilibrium of the banking game with com-
mitment.

In other words, under the assumption of commitment, bank runs cannot occur in equilibrium be-

cause the banking authority has a policy tool – freezing all remaining deposits after π withdrawals

– that costlessly rules them out.
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4 Equilibrium without Commitment

In earlier work (Ennis and Keister, 2009a), we showed that the deposit-freeze policy (6) is not

ex post efficient in the event of a run. If the banking authority cannot commit to a policy, it would

not choose to freeze deposits when faced with a run; doing so would deny consumption to those

truly impatient depositors who have not yet been served. Depositors anticipate this fact, of course,

and thus recognize that if a run were to occur, it could compromise the solvency of the banking

system. In this way, the banking authority’s inability to commit to a policy like (6) may generate

an ex ante incentive for depositors to run.

Here we study the properties of equilibrium bank runs in the environment without commitment.

We first show that the standard approach to modeling a bank run, in which all depositors run in

some sunspot states, is inconsistent with equilibrium in our model. We then construct a class of

partial-run equilibria and study the interaction between depositors’ withdrawal decisions and the

reactions of the banking authority in these equilibria.

It is worth pointing out that there is always an equilibrium without commitment of the overall

banking game in which the first-best allocation obtains; the reasoning is almost identical to that in

the commitment case. The difference between the environments with and without commitment is

not related to the ability of the banking authority to generate the efficient allocation as an equilib-

rium outcome. Rather, the key difference lies in the ability – or inability – of the banking authority

to rule out undesirable allocations as competing equilibrium outcomes.

4.1 No full-run equilibrium

In a full bank run, all patient depositors attempt to withdraw early in some states and wait until

period 2 in the remaining states. The strategy profile associated with this type of run,

yi (θi, s) =

½
θi for s > s1

0 for s ≤ s1

¾
for some s1 ∈ (0, 1) , for all i, (7)

has been discussed extensively in the literature; see, for example, Diamond and Dybvig (1983),

Cooper and Ross (1998), and Peck and Shell (2003). Even in the environment without commit-

ment, the model we study here cannot have a full bank run equilibrium.

Proposition 2 The strategy profile (7) cannot be part of an equilibrium of the banking game
without commitment.
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To see why this is the case, consider the banking authority’s best response if it were faced with

the strategy profile in (7). The first π depositors to withdraw provide no information about the state

s, since the fraction of depositors withdrawing is at least π in every state. The banking authority

will, therefore, give some common amount c1 to each of these depositors. The size of the payment

c1 will depend on s1, of course, but the exact amount is not important for the argument.

The banking authority recognizes that after π withdrawals have taken place, additional with-

drawals in period 1 will only occur in states with s ≤ s1, in which case all depositors will withdraw

early. The banking authority’s best response will then be to set the payments x (μ) for μ > π so

as to evenly divide its remaining assets among the remaining depositors. Each of these depositors

would receive

x (μ) =
1− πc1
1− π

≡ ec1 for μ > π.

Given this payment schedule, does the strategy profile in (7) represent an equilibrium of the

depositor’s game? No; the payment available to a patient depositor who deviates and withdraws in

period 2 in states s ≤ s1 is Rec1, which is strictly greater than ec1. Any patient depositor with i > π

would, therefore, prefer to wait until period 2 to withdraw. A patient depositor with i ≤ π may or

may not prefer to wait, depending on the relative sizes of c1 and Rec1, but either way the strategy

profile (7) is inconsistent with equilibrium behavior.

The logic above indicates that there cannot be a full run on the banking system. If, at any

point in period 1, the banking authority expects all remaining depositors to withdraw early, it will

react by dividing the remaining resources evenly among these depositors. This reaction removes

the incentive for the depositors to run.12 In order for a run to occur in equilibrium, therefore,

depositors must follow strategies different from those in (7). In the next subsection, we show that

such equilibria do indeed exist.

4.2 A class of partial-run equilibria

In a partial bank run, some patient depositors withdraw early while others do not. The following

proposition shows that there exist equilibria in which partial banks runs occur in some states in the

environment without commitment.

12 Note that the banking authority is not attempting to dissuade depositors from running here; it is simply choosing
a best response to depositors’ actions. This feature is different from the run-proof contracts studied by Cooper and Ross
(1998) and others, which require the banking authority to commit to a policy that removes depositors’ incentive to run.
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Proposition 3 Given R, π, and γ satisfying

f(γ, 0) =
R

2−γ
γ

π + (1− π)R
1−γ
γ

< 1 (8)

and given any λ < 1, there exists an equilibrium of the banking game without commitment in which
the fraction of depositors withdrawing in period 1 is greater than λ with positive probability.

The proof, which is presented in the appendix, constructs a general class of partial-run equilibria

and shows that the entire class of equilibria exist when (8) is satisfied. Notice that for any given

values of R and π, this condition will hold if γ is large enough, that is, if depositors are sufficiently

risk averse.

Taken together, Propositions 1 and 3 establish the importance of commitment in this model.

When the banking authority can commit to follow a pre-specified banking policy, bank runs never

occur in equilibrium. When this ability to commit is absent, however, run equilibria can eas-

ily exist. The bank runs in these equilibria must be partial, with only some agents participating.

Moreover, the equilibria identified by Proposition 3 have a wave structure. If more than π deposi-

tors withdraw in period 1, the banking authority reacts by rescheduling payments. At that point, the

run may stop or it may continue. If it continues, a second wave of withdrawals will trigger another

policy reaction by the banking authority. This process can repeat many times, with the number

of waves determining the eventual size of the run. The next section studies this wave structure in

detail.

5 Waves of Withdrawals and Policy Responses

A key feature of equilibrium in the environment without commitment is the interplay between

depositors’ withdrawal decisions and the actions of the banking authority. In the commitment case,

this interplay does not arise because the banking policy is completely set before depositors choose

their strategies. The choice of policy affects depositors’ decisions, of course, but the effect only

runs in one direction. In the environment without commitment, in contrast, the banking policy

also reacts to depositors’ withdrawal decisions. To understand how this interplay is captured in the

wave structure of equilibrium, and to see where condition (8) comes from, it is useful to examine

the simplest type of partial-run equilibrium.
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5.1 Equilibria with a single policy response

Consider the strategy profile

For s > s1 : yi (θi, s) = θi for all i

For s ≤ s1 : yi (θi, s) =

½
0
θi

¾
for
½

i ≤ π
i > π

¾
.

(9)

In this profile, the first π depositors in the order run on the bank in some states. Once this wave

has passed, however, the run halts and only the remaining impatient depositors withdraw.13 We

construct an equilibrium based on this strategy profile in two steps. First, we derive the banking

authority’s best response to (9); let bx denote the best-response policy. We then show that the profile

in (9) is an equilibrium of the depositors’ game generated by bx whenever condition (8) holds.

Step 1. We calculate the banking authority’s best response to (9) by working backward. First,

note that the fraction of depositors withdrawing in period 1 is at most 1 − (1− π)2 , so the pay-

ments x (μ) for μ > 1 − (1− π)2 need not be specified. Next, consider x (μ) for any μ ∈¡
π, 1− (1− π)2¢ . These payments will only be made in states s ≤ s1. If these payments are

made, therefore, the banking authority knows that (i) a run will have occurred, meaning that the

first π withdrawals were made by a mix of patient and impatient depositors, but (ii) all additional

withdrawals in period 1 will be made by depositors who are truly impatient. The total fraction of

depositors withdrawing in period 1 will, therefore, be 1− (1− π)2 .

Because depositors are risk averse, the banking authority will choose to offer a common pay-

ment to all of the (impatient) depositors who withdraw after π. We denote this payment c1,2, where

the latter subscript indicates that the payment is associated with the 2nd “stage” of the payment

schedule. The banking authority will also give a common payment c2,2 to the (patient) depositors

who withdraw in period 2. These payments will be chosen to maximize the banking authority’s

objective function (2). Let ψ denote the per-capita amount of resources the banking authority has

left after the first π withdrawals, that is,

ψ =
1−

R π
0
x (μ) dμ

1− π
.

13 Gu (2008) studies a model with demand-deposit contracts and generates a partial-run equilibrium by having de-
positors observe imperfectly correlated sunspot signals. In her setting, a partial run occurs in some states and
a full run in others. In our environment, in contrast, only partial runs are observed; a full run cannot occur in any state.
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Then the payments c1,2 and c2,2 will solve

max
{c1,2,c2,2}

π
(c1,2)

1−γ

1− γ
+ (1− π)

(c2,2)
1−γ

1− γ
(10)

subject to

(1− π)c2,2 = R [ψ − πc1,2] .

Notice the similarity between this problem and (3). The strategy profile in (9) implies that when a

run occurs, it halts after π withdrawals have been made. From that point onward, only impatient

depositors withdraw in period 1. The banking authority is, therefore, able to implement the first-

best continuation allocation, given the per-capita amount ψ of resources remaining. Let (bc1,2,bc2,2)
denote the solution to this problem, which will always satisfy bc2,2 > bc1,2. Let V (ψ) denote the

value of the objective in (10) evaluated at the solution.

We next ask how the banking authority will set the payments to the first π depositors who

withdraw. The banking authority does not know whether these payments will go to only impatient

depositors, as will happen if s > s1, or to a mix of patient and impatient depositors participating in

a run, as will occur if s ≤ s1. As these withdrawals take place, the banking authority is unable to

infer anything about the state s, since at least π withdrawals will occur in all states. As a result, the

banking authority will choose to give the same payment to all π depositors. Any payment schedule

for which x (μ) is not constant for (almost) all μ ≤ π is strictly dominated by another policy that

makes the same total payment to these depositors, leaving ψ unchanged, but divides the resources

evenly among them.

The banking authority will, therefore, set x (μ) = bc1 for μ ∈ [0, π] , where (bc1,bc2) solves

max
{c1,c2}

(1− s1)

Ã
π

(c1)
1−γ

1− γ
+ (1− π)

(c2)
1−γ

1− γ

!
+ s1

Ã
π

(c1)
1−γ

1− γ
+ (1− π)V (ψ)

!
(11)

subject to

(1− π)c2 = R (1− πc1) and

ψ =
1− πc1
1− π

.

It is straightforward to show that bc2 > bc1 holds. In other words, if a run does not occur (that is, if

s > s1), then depositors withdrawing in period 2 will receive more than depositors withdrawing
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in period 1. In addition, if s1 > 0, meaning that a run is possible, it can be shown that bc1,2 is

strictly smaller than bc1 – that is, depositors who withdraw in period 1 after it becomes clear that a

partial run has taken place suffer a “discount” relative to depositors who were earlier in the order.

Summarizing, the banking authority’s best response to the profile of withdrawal strategies (7) is

given by bx (μ) =

½ bc1bc1,2
¾

for μ ∈
½

[0, π]¡
π, 1− (1− π)2¤ ¾ . (12)

Step 2. We next ask if the strategy profile in (9) is an equilibrium of the depositors’ game generated

by bx. In other words, if the banking authority were to follow the payment scheme in (12), would

each depositor find it optimal to follow (9) if she believed others would do so? Impatient depositors

will always choose to withdraw in period 1, so we only need to consider the actions of patient

depositors.

In states s > s1, a patient depositor receives bc2 if she waits until period 2 to withdraw, but

receives bc1 if she deviates and withdraws early. Since bc2 > bc1 holds, waiting to withdraw is clearly

the optimal choice in these states. In states s ≤ s1, the payment a patient depositor receives if she

chooses to withdraw early depends on her index i. For a patient depositor with i > π, the choice is

between bc1,2 if she withdraws early and bc2,2 if she waits. Since bc2,2 > bc1,2, it is optimal for her to

wait, as specified by (9).

What about patient depositors with i ≤ π? Such a depositor will also receive bc2,2 if she waits

until period 2, but will receive the original payment bc1 if she withdraws early. She will choose to

follow (9) and withdraw early if bc1 > bc2,2. The proof of Proposition 3 shows that this condition

will be satisfied whenever (8) holds and the probability of a run s1 is small enough. In such cases,

the profile of withdrawal strategies (9) represents an equilibrium of the depositors’ game generated

by the policy bx. Since bx is, by construction, the banking authority’s best response to (9), we have

constructed an equilibrium of the overall banking game without commitment. Notice that the

fraction of depositors withdrawing in period 1 in this equilibrium is stochastic: it equals π in some

states and 1− (1− π)2 in others.

This construction sheds some light on the form of condition (8). When a run occurs, the banking

authority will pay out a total of πbc1 to withdrawing depositors before inferring that a run has taken

place. When π is large, therefore, the banking authority makes this inference relatively late in the
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course of events, after a large number of withdrawals have taken place and the remaining resources

are relatively small. This fact increases the ex ante incentive for depositors to run and, as a result,

condition (8) is more likely to hold. A similar effect arises when depositors are very risk averse

(i.e., γ is large), because the efficient allocation offers depositors a high level of liquidity insurance

and, hence, bc1 is relatively large. As mentioned above, for any given values of R and π, condition

(8) is always satisfied when depositors are sufficiently risk averse.

5.2 Multiple waves of withdrawals and responses

Proposition 3 states that, when condition (8) holds, there exist equilibria in which the fraction

of depositors withdrawing in period 1 is very close to one with positive probability. The proof

in the appendix constructs such equilibria in closed form. The basic idea underlying the proof,

however, can be understood by extending the example presented in the previous subsection. In

this subsection, we describe an equilibrium in which the run may continue even after the banking

authority has rescheduled payments. Once this is done, it will be fairly easy to see how the logic

can be extended further to deliver the proof of Proposition 3.

Consider the following profile of withdrawal strategies:

for s ≥ s1 : yi (θi, s) = θi for all i

for s ∈ [s2, s1) : yi (θi, s) =

½
0
θi

¾
for
½

i ≤ π
i > π

¾

for s < s2 yi (θi, s) =

½
0
θi

¾
for
½

i ≤ 1− (1− π)2

i > 1− (1− π)2

¾ (13)

for some s1 > s2 > 0. Notice how early withdrawals have a wave structure in this strategy profile.

When s < s1, there is a wave of early withdrawals as the first π depositors run on the bank, exactly

as in the previous subsection. At this point, the run may halt or it may continue. In particular,

if s < s2 another wave of early withdrawals will take place as the next group of depositors run.

Following this wave, the run necessarily halts and the only further withdrawals are those made by

the remaining impatient depositors.

To construct an equilibrium based on this strategy profile, we follow the same two steps as in

the previous case. First, we derive the banking authority’s best response to (13), denoted bx, and

then we show that (13) is an equilibrium of the depositors’ game based on bx whenever (8) holds.
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Step 1. Without going into the details of the calculations, it is easy to see that the banking author-

ity’s best response to the strategy profile in (13) must be of the form

bx (μ) =

⎧⎨⎩ c1
c1,2
c1,3

⎫⎬⎭ for

⎧⎨⎩
μ < π

μ ∈
¡
π, 1− (1− π)2

¤
μ > 1− (1− π)2

⎫⎬⎭ . (14)

The reasoning behind (14) is exactly the same as that behind the policy in (12). As the first π

withdrawals are taking place, the banking authority is unsure whether or not a run is underway

and it will choose to offer a common payment c1 on all of these withdrawals. This payment can

be found by solving a problem similar to (11); see the proof of Proposition 3 in the appendix for

details.

If more than π withdrawals take place in period 1, the banking authority will recognize that a

run is underway and will reschedule payments. At this point, however, the banking authority is

unsure whether the run will halt, with all additional period-1 withdrawals being made by impatient

depositors, or if it will continue. The run will halt if s ∈ [s2, s1) and will continue if s < s2; hence,

the banking authority assigns conditional probability s2/s1 to the event that the run continues.

Based on this probability, the banking authority will choose to give a common payment c1,2 to

the next π (1− π) depositors who withdraw. If more than 1− (1− π)2 withdrawals take place in

period 1, the banking authority will be able to infer that s < s2. In this case it will solve a problem

similar to (10) to find the best payment c1,3.

Step 2. The remaining question is whether or not the withdrawal strategies (13) are an equilibrium

of the depositors’ game generated by the policy (14). Would each individual depositor be willing

to follow the strategy in (13) if she expected all others to do so? The answer will be affirmative if

and only if the payments induced by the policy (14) satisfy

c1 ≤ c2, c1,2 ≤ c2,2, and c1,3 ≤ c2,3, (15)

as well as

c1 ≥ c2,2, c1 ≥ c2,3, and c1,2 ≥ c2,3. (16)

The inequalities in (15) guarantee that if a run is not currently underway when a patient depositor

has the opportunity to withdraw, she will be willing to wait until period 2. The first inequality
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applies to states s ≥ s1, where each depositor receives c1 if she withdraws in period 1 and c2 if she

waits until period 2. The second applies to states s ∈ [s2, s1) and depositors i > π, while the third

inequality applies to states s < s2 and depositors i > 1 − (1− π)2 . It can be shown that these

inequalities always hold.

The inequalities in (16) guarantee that a patient depositor is willing to participate in the run if

one is underway when she has the opportunity to withdraw. The first inequality guarantees that

depositors with i ≤ π are willing to run in states s ∈ [s2, s1) , while the second ensures that

these same depositors are willing to run in states s < s2. The third inequality guarantees that

depositors with i between π and 1 − (1− π)2 are willing to run in states s < s2. Whether or not

the inequalities in (16) hold will depend on the cutoff states s1 and s2, which have a large impact

on the payments that the banking authority chooses. It can be shown that there exist s1 > s2 > 0

such that all of these inequalities hold if and only if condition (8) holds. This reasoning shows that,

under condition (8), there exist equilibria in which the fraction of depositors withdrawing in period

1 is equal to 1− (1− π)3 with positive probability.

Nothing in the logic presented above requires a run to end with certainty after a second wave of

early withdrawals. This same approach can be used to construct equilibria in which a run may occur

in any finite number of waves, each of which elicits a policy response from the banking authority.

In this way, an equilibrium can be constructed in which the fraction of depositors withdrawing in

period 1 is very close to one in some states. The details of this construction can be found in the

proof given for Proposition 3 in the appendix.

5.3 Discussion

An interesting feature of the equilibria identified in Proposition 3 is that, even if nearly all depos-

itors end up withdrawing in period 1, the banking authority remains “optimistic” throughout the

period that the run has already ended. As discussed above, if the banking authority ever believed

that a full run was underway, it would reschedule payments in such a way that the remaining de-

positors would choose not to run. The only way a run can continue (or even start) is if the banking

authority is fairly optimistic and, therefore, sets the payment for early withdrawals relatively high.

This fact implies that bank runs must occur in waves in our environment, with the run likely to end

after each wave.
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This feature of the model is reminiscent of events in the summer of 2008, after the collapse

of Bear Stearns but before the failure of Lehman Brothers. Policy makers around the world had

implemented a variety of responses to the financial crisis. More drastic actions could have been

taken and may – with the benefit of hindsight – have prevented the crisis from deepening. The fact

that these actions were not taken appears to have reflected, in part, a belief that the worst of the

crisis may have already passed.14 Our model indicates that this feature is an essential element of

financial crises. The policy maker correctly anticipates the probability that conditions will worsen

and responds appropriately. When this probability is small enough, however, the response leaves

the door open for the crisis to deepen. In this way, the model illustrates how optimism about the

course of events can combine with limited commitment to lay the seed of a deepening financial

crisis.

Peck and Shell (2003) study a model with aggregate uncertainty about the fraction of impatient

depositors and construct examples of equilibria in which all depositors run. In these equilibria,

the banking authority remains optimistic that it is observing an unusually large realization of the

fraction of impatient depositors rather than a run and, hence, believes that the withdrawals will

likely stop soon. In this sense, the aggregate uncertainty in their model plays the role of the wave

structure of equilibrium in ours.

The two approaches have fundamental differences, however. In their setting, the banking au-

thority can never know for certain whether or not a run has occurred, even after the fact. In the

examples they construct, the event in which all depositors are impatient is much more likely than

a run. We do not believe it is plausible to characterize events in the U.S. in the early 1930s or

in Argentina in 2001 as possibly resulting from a spike in the fundamental demand for liquidity.

Once underway, a run on the banking system is easily recognized. Our model has this property:

when more than π withdrawals take place, the banking authority correctly infers that a run has

taken place. Its optimism is not about whether a run has occurred, but rather about whether the run

will continue after payments are rescheduled.

14 See, for example, a speech given by then-Governor Mishkin on July 2, 2008: “The period of extreme stress
seems to have abated, and financial markets are showing some tentative signs of revival.” Available at:
http://www.federalreserve.gov/newsevents/speech/mishkin20080702a.htm
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6 Concluding Remarks
The issues of commitment, credibility, and time-inconsistency are pervasive in economics and

have been studied extensively. In banking theory, however, the importance of these issues has

received relatively little attention, apart from often informal treatments of bank bailouts. 15 Re-

cent events have highlighted the difficulty policy makers would face in trying to follow a pre-

specified course of action throughout a financial crisis. Government officials and central bankers

have repeatedly described and justified their actions during the financial crisis as the best available

response to the situation they faced, rather than as the result of a pre-formulated plan. In such

situations, the anticipated policy response to a crisis clearly influences people’s ex ante incentives

and behavior.

The paper analyzes the role of commitment in banking policies designed to respond to the

possibility of a run on the banking sector. We study a setting in which bank runs would never

occur under commitment because, in that case, the threat to freeze deposits in the event of a run

convinces depositors not to run in the first place. In contrast, equilibrium bank runs can easily

occur in this same setting when policy makers are unable to commit to future actions.

Moreover, equilibrium bank runs in our model take an interesting, and perhaps realistic, form.

A run is necessarily partial, with only some depositors participating. The policy maker in our

model observes waves of withdrawals from the banking system during a crisis. After each wave,

the policy maker reacts based, in part, on how likely she thinks it is that the run will continue.

This reaction, and depositors’ anticipation of the reaction, affects the incentive for depositors to

participate in the run. In this way, the model illustrates how the interplay between the actions of

depositors and the responses of the policy maker shapes the course of a financial crisis.

This structure also implies that the size of the crisis in our model is stochastic. After each wave

of withdrawals, the crisis may end or it may deepen as an additional wave of withdrawals takes

place, leading to an even stronger response from the policy maker. An immediate implication

of this structure is that larger crises are less likely to occur than smaller ones. In addition, the

structure of the model requires that the policy maker always be optimistic that the worst of the

crisis has likely passed. This optimism prevents the policy maker from choosing a more drastic

response; the less-drastic response, in turn, is what leaves open the possibility that the crisis will

continue.
15 Two notable exceptions are Mailath and Mester (1994) and Acharya and Yorulmazer (2007), both of which deal
with credibility issues in policies regarding bank closure.
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A large number of papers have addressed applied questions related to bank runs and financial

crises using versions of the Diamond-Dybvig model.16 In order to obtain a run equilibrium in a

tractable way, these papers place ad hoc restrictions on the banking contract, such as requiring

banks to redeem deposits at face value until their assets are totally depleted. This approach has

obvious drawbacks, including the fact that the results of such an exercise may depend critically

on what restrictions are imposed. The model presented here offers an alternative. There are no

restrictions on contracts other than those imposed by the physical environment, and yet the model

is highly tractable. In addition, the model captures the interplay between withdrawal decisions and

policy responses in a way that was absent in the previous literature.

The main lesson of the paper is that the inability of policy makers to commit to a future course

of action in the event of a crisis may lie at the root of the problem of financial fragility. This insight

suggests that strong institutions, which limit the flexibility of policy makers during a financial

panic, may have a stabilizing influence on the financial system. It also suggests that developing

and empowering such institutions may produce important benefits that have not been previously

recognized in the economics literature.

16 See, for example, Temzelides (1997), Cooper and Ross (1998), Allen and Gale (2000), Chang and Velasco (2001),
Ennis and Keister (2003), Goldstein and Pauzner (2005), and Uhlig (2010) to name only a few.
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Appendix A. Proof of Proposition 3

Proposition 3: If (8) holds, then for any λ < 1 there exists an equilibrium of the banking game

without commitment in which the fraction of depositors withdrawing in period 1 is greater than λ

with positive probability.

The proof is constructive. Let K be the smallest integer such that

1− (1− π)K+1 > λ

holds. Consider the strategy profile

for s ≥ s1 : yi (θi, s) = θi for all i

for s ∈ [sk+1, sk) : yi (θi, s) =

½
0
θi

¾
for i

½
≤
>

¾
1− (1− π)k

(17)

for k = 1, . . .K, where

1 > s1 > . . . > sK > sK+1 ≡ 0.

Under this strategy profile, the fraction of depositors withdrawing in period 1 is 1−(1− π)K+1 with

probability sK > 0. Therefore, if we can show that (17) is part of an equilibrium of the banking

game without commitment, the proposition will be proved. We break this task into two steps,

which are addressed in separate lemmas below. First, Lemma 1 derives the banking authority’s

best response to this strategy profile, which we denote bx. Lemma 2 then shows that when (8)

holds, we can choose the numbers sk such that (17) is an equilibrium of the depositors’ game

generated by bx. The result in the proposition follows immediately from these two lemmas.

Lemma 1 The banking authority’s best response to (17) is

bx (μ) =

Ã
kY

j=1

Aj

π + (1− π)Aj

!
1

Ak
for μ ∈

³
1− (1− π)k−1 , 1− (1− π)k

i
,

where

Ak =
¡
(1− qk)R

1−γ + qk (π + (1− π)Ak+1)
γ¢ 1

γ , for k = 1, . . . ,K + 1. (18)

Proof: We work backwards. Define ψK to be the per-capita resources remaining after 1−(1− π)K
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withdrawals have been made, that is,

ψK =
1−

R 1−(1−π)K

0
x (μ) dμ

(1− π)K
.

We first derive the payments x (μ) for μ ∈
³
1− (1− π)K , 1− (1− π)K+1

i
.17 The banking au-

thority recognizes that under (17) these payments will only be made in states s < sK and that all of

these payments, in the event they are made, will go to impatient depositors. The remaining patient

depositors will wait until period 2 to withdraw. Because depositors are risk averse, the banking

authority will choose to give the same amount to all impatient depositors; we denote this amount

c1,K+1, where the latter part of the subscript indicates that these payments would apply after there

have been K waves of withdrawals and the run has halted. Let c2,K+1 denote the payment that the

remaining patient depositors will receive in period 2. These payment amounts will be chosen to

solve

max
c1,K+1,c2,K+1

π
(c1,K+1)

1−γ

1− γ
+ (1− π)

(c2,K+1)
1−γ

1− γ
(19)

subject to
(1− π)c2,K+1 = R [ψK − πc1,K+1]

and non-negativity constraints. Notice that this problem resembles that for finding the first-best

allocation, but with per-capita resources set to ψK instead of 1. The solution is

bc1,K+1 = ψK

1

π + (1− π)AK+1
and bc2,K+1 = ψK

RAK+1

π + (1− π)AK+1
, (20)

where

AK+1 ≡ R
1−γ
γ < 1. (21)

Let VK+1 denote the value of the objective in (19) evaluated at the solution, that is

VK+1 (ψK) = π
(bc1,K+1)

1−γ

1− γ
+ (1− π)

(bc2,K+1)
1−γ

1− γ
,

or, substituting in (20),

VK+1 (ψK) = (π + (1− π)AK+1)
γ (ψK)1−γ

1− γ
.

17 Under (17), there are no circumstances in which the payments associated with μ ≥ 1 − (1− π)K+1 will be
made. The best-response levels for these payments are, therefore, indeterminate and do not matter for our analysis.
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Next, we consider the payments in the interval

μ ∈
³
1− (1− π)k−1 , 1− (1− π)k

i
for any k ∈ {1, . . . ,K} .

These payments will be made in states s ≤ sk−1. Unlike in the previous case, the banking authority

is not sure if these payments will go only to impatient depositors, as will occur if s ∈ [sk, sk−1) ,

or to a mix of patient and impatient depositors during a continued run, as will occur if s < sk. Re-

gardless of which case applies, however, the banking authority will want to give the same payment

to all depositors who withdraw in this interval. In other words, any payment schedule for which

x (μ) is not constant for (almost) all μ in this interval is strictly dominated by another policy that

makes the same total payments to these depositors, but divides the resources evenly among them.

Let c1,k denote the payment given to depositors withdrawing in this interval in period 1. Let c2,k
denote the payment that will be received by patient depositors in period 2 if there are no further

withdrawals in period 1, that is, if s ∈ [sk, sk−1) .

Before we write the optimization problem for choosing these payment levels, we introduce

some notation to simplify the statement of the problem. First, define ψk−1 to be the amount of

resources per capita that remain after 1− (1− π)k−1 withdrawals in period 1, that is,

ψk−1 =
1−

R 1−(1−π)k−1

0
x (μ) dμ

(1− π)k−1
for k = 1, . . . ,K.

Straightforward calculations then yield the following relationship betweenψk−1, the payments c1,k,

and the per-capita resources ψk remaining after these payments are made,

ψk =
ψk−1 − πc1,k

1− π
. (22)

Next, define

qk =
sk
sk−1

= Prob [s < sk | s < sk−1] for k = 1, . . . ,K,

with s0 ≡ 1. In other words, qk is the probability that the run will continue into the kth wave, given

that it has lasted for k − 1 waves. Finally, let Vk
¡
ψk−1

¢
denote the average expected utility of

depositors with i > 1 − (1− π)k−1 conditional on s < sk−1. In other words, Vk measures the

expected utility of depositors who have not yet been served when the banking authority discovers

that the run has at least k − 1 waves. Then the banking authority will choose the payment c1,k to
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solve

max
c1,k,c2,k

(1− qk)

Ã
π

(c1,k)
1−γ

1− γ
+ (1− π)

(c2,k)
1−γ

1− γ

!
+ qk

Ã
π

(c1,k)
1−γ

1− γ
+ (1− π)Vk+1 (ψk)

!

subject to
(1− π)c2,k = R

£
ψk−1 − πc1,k

¤
,

(22), and non-negativity constraints. The first term in the objective function represents utility in the

event that the run halts after k−1 waves. In this case, the remaining impatient depositors all receive

c1,k and the remaining patient depositors receive c2,k in period 2. The second term represents utility

in the event that the run continues into the kth wave, which occurs with probability qk. In this case,

the first π depositors to withdraw (a mix of impatient and patient depositors) will receive c1,k. The

remaining depositors will receive payments after the next phase of the policy response takes effect;

the utility of these depositors is captured by the value function Vk+1.

Solving this problem recursively backward, substituting the value function for each value of k

into the problem for k − 1 yields

bc1,k = ψk−1
1

π+(1−π)Ak
, bc2,k = ψk−1

RAk
π+(1−π)Ak

, and

Vk
¡
ψk−1

¢
= (π + (1− π)Ak)

γ (ψk−1)
1−γ

1−γ ,

where Ak is given in (18). We can then replace the ψk terms as follows. Since ψ0 = 1 (by

definition), we have bc1,1 =
1

π + (1− π)A1
.

Then we can calculate the amount of resources remaining after the first π withdrawals

ψ1 =
1− πbc1,1

1− π
=

A1

π + (1− π)A1
,

and use this amount to find the optimal payment levels following the first policy response

bc1,2 =
A1

π + (1− π)A1

1

π + (1− π)A2
and bc2,2 =

A1

π + (1− π)A1

A2

π + (1− π)A2
R.

Continuing this process forward yields

ψk =
kY

j=1

Aj

π + (1− π)Aj
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and

bc1,k =

Ã
kY

j=1

Aj

π + (1− π)Aj

!
1

Ak
and bc2,k =

Ã
kY

j=1

Aj

π + (1− π)Aj

!
R, (23)

which establishes the Lemma. ¥

Lemma 2 If (8) holds, there exist 1 > s1 > . . . sK > 0 such that (17) is an equilibrium of the
depositors’ game generated by bx.
Proof: Since impatient depositors will always choose to withdraw early, we only need to check the

optimal behavior of a depositor when she is patient. The strategies in (17) are individually optimal

if
(a) bc1,j ≥ bc2,k for j = 1, . . . k − 1
(b) bc1,k ≤ bc2,k

¾
for k = 1, . . . ,K + 1.

The inequalities on line (a) imply that patient depositors are willing to participate in the run. If

the run lasts for k − 1 waves, then a patient depositor who chooses not to run will receive bc2,k. A

patient depositor who withdraws early receives bc1,j for some j < k that depends on her index i.

If each of these inequalities hold, then all patient depositors who have an opportunity to withdraw

during the run will choose to do so. The inequalities on line (b) are often referred to as the incentive

compatibility constraint. They imply that if a run is not underway, or has halted before a depositor

is served, then a patient depositor will be willing to wait and withdraw in period 2.

We examine line (b) first. From (21) we have RAK+1 = R
1
γ > 1. Then, using (18), we have

RAk = ((1− qk)R + qk (πR + (1− π)RAk+1)
γ)

1
γ , for k = 1, . . . ,K.

Applied recursively from k = K down to k = 1, this expression demonstrates that

RAk > 1 for k = 1, . . . ,K + 1.

It then follows immediately from (23) that (b) holds.

Next, we examine line (a) . First, from (23) we have

bc1,j+1 =
Aj

π + (1− π)Aj+1
bc1,j. (24)
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It is straightforward to show that

Aj

π + (1− π)Aj+1
< 1 for j = 1, . . . ,K.

Equation (24) therefore shows that the payment received by depositors in each wave is smaller than

in the previous wave, an intuitive result. More importantly, this result also implies that instead of

checking the k− 1 inequalities on line (a) for each value of k, we only need to check the last one:

bc1,k−1 ≥ bc2,k for k = 2, . . . ,K + 1.

This inequality can be written as

bc1,k−1 =

Ã
k−1Y
j=1

Aj

π + (1− π)Aj

!
1

Ak−1
≥
Ã

kY
j=1

Aj

π + (1− π)Aj

!
R = bc2,k,

which can be reduced to

(AkR)γ
µ

(1− qk−1)
R1−γ

(π + (1− π)Ak)
γ + qk−1

¶
< 1 for k = 2, . . . ,K + 1. (25)

By replacing the Ak terms recursively, using (18), we have K inequalities involving only the

parameters R, γ, π, and the (endogenous) probabilities q1, . . . , qK . The question is under what

conditions these probabilities can be chosen so that all K inequalities hold.

Suppose we set qk = 0 for all k. Then Ak = R
1−γ
γ for all k and (25) reduces to the same

inequality for all values of k :

R
1
γ

R
1−γ
γ

π + (1− π)R
1−γ
γ

< 1,

which is exactly condition (8). Since the inequalities (25) are clearly continuous in the variables

qk, we therefore know that when (8) holds, there exists a number q > 0 such that (25) holds for all

k if we set qk = q for all k. We can then back out the cutoff states s1, . . . , sK by

s1 = q

sk = qsk−1 = qk for k = 2, . . . ,K.

Since sK > 0 holds, we have established the lemma. ¥
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