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Abstract
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while bailouts are too large and too frequent. Moreover, the bank may face a run
by informed investors, creating further distortions and leading to a larger bailout. We
show how a regulator with limited information can raise welfare and, in some cases, im-
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1 Introduction

In periods of crisis, banks and other financial institutions suffer losses that are eventually

borne in some combination by their own investors and creditors and, possibly, by the public

sector in the form of a bailout. How these losses are allocated between private agents and

the public sector has important implications for incentives and behavior in normal times as

well as for the allocation of resources in society. After the global financial crisis of 2008 and

the subsequent European debt crisis, a broad consensus emerged that too many of the losses

in these events fell on the public sector, that is, bailouts were too frequent and too large.

This perception led policy makers to draft rules requiring financial institutions to impose

more losses on (or “bail in”) their investors/creditors in future crises. How effective these

mechanisms will be in practice remains to be seen. Even at a conceptual level, however, it

is not well understood how losses should be allocated in a crisis, nor what types of bail-in

policies are likely to be most effective.

We study the interaction between bail-ins and bailouts, focusing on the early stages of

a crisis. Our model builds on the classic framework of Diamond and Dybvig (1983), where

investors face idiosyncratic liquidity risk and pool their resources in a bank.1 Bank assets

are risky in our model and the size of the bank’s loss during a crisis is initially not known

to policy makers. Some of the bank’s creditors have private information about this loss

and can withdraw before the information is revealed. The bank has the ability to bail in

these creditors by paying them less than in normal times. In practice, this bail-in represents

any action that preserve resources within the bank, including lowering dividend payments,

restricting withdrawals and/or imposing withdrawal fees. We study banks’ incentives in

making this bail-in decision and ask if regulating its choice can improve welfare.

Our model provides a framework for evaluating policies like the reforms to money market

mutual funds adopted in the U.S. in 2014.2 Under these rules, some funds are permitted

to limit redemptions and impose withdrawal fees – a type of bail-in – during periods of

financial stress. A fund is directed to take these actions if doing so is in the best interests

of its investors. This policy raises interesting questions: What are the best interests of

an institution’s investors in such a situation? Are these rules likely to achieve desirable

1While we use the word bank throughout the paper, our analysis also applies to many intermediation ar-
rangements outside of commercial banks that perform maturity or liquidity transformation. Yorulmazer
(2014) discusses several such arrangements that encountered disruptions during the financial crisis of 2008.
See also Chen et al. (2010) for an analysis of open-end mutual funds, Schmidt et al. (2016) on money market
mutual funds, and Goldstein et al. (2017) on corporate bond funds.
2See Ennis (2012) for a discussion of the fundamental issues involved in reforming money market mutual
funds. Ennis et al. (2023) provide a critical overview of the 2014 reforms in the U.S. and discuss recent
proposals for future reform.
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outcomes? Another example is the debate over whether regulators should restrict dividend

payments by banks during events like the onset of the Covid-19 pandemic. The European

Central Bank recommended on March 27, 2020, that banks “refrain from making dividend

distributions and performing share buy-backs aimed at remunerating shareholders” during

this period.3 In the U.S., the Federal Reserve moved on June 25, 2020, to prohibit share

repurchases and to cap dividend payments by large banks. When is it desirable to impose

broad restrictions on the payments banks make to their investors? What types of restrictions

are most effective? We develop a model to address these questions.

The efficient allocation of a bank’s loss in our model depends on the public sector’s cost

of funds. If this cost is high enough, a benevolent planner will provide no bailouts and will

cover the entire loss by bailing in the bank’s investors. When this cost is lower, however,

the planner will provide a bailout if the bank’s loss is sufficiently large. In other words,

the planner wants the public sector to absorb some of the “tail risk” in the economy, which

implies that a combination of bail-ins and bailouts is efficient. In both cases, the planner

will impose the same bail-in on all investors, regardless of whether they withdraw early or

remain invested in the bank.

In the decentralized economy, the bank’s incentive to bail in early-withdrawing investors

depends on what bailout policy it expects. We assume the government cannot commit; it

will choose the bailout as a best response to the situation at hand when the bank’s loss is

revealed. This situation, in turn, will depend on the bail-in that was applied to the investors

who have already withdrawn at that point. In particular, a smaller initial bail-in leaves

the bank in worse condition, leading to a larger bailout. This pattern clearly distorts the

bank’s incentive when choosing the initial bail-in. We show that, in states where the bank

anticipates being bailed out, its initial bail-in is always smaller than the planner would choose

and the subsequent bailout is always larger.

The smaller initial bail-in can also lead to a run on the bank in some states, which would

never occur in the planner’s allocation. When the bank chooses a smaller bail-in, it increases

the incentive for investors to withdraw early, before policy makers observe the bank’s loss

and the bail-in increases to the efficient level. We show that, in some cases, withdrawing

early becomes a dominant strategy and leads to a fundamentals-based run on the bank. This

run is partial and only involves investors who are able to withdraw before the government

intervenes. The bank knows this partial run will occur and could prevent it by imposing an

initial bail-in large enough to discourage early withdrawals. But doing so is costly because

3See “Recommendation of the European Central Bank of 27 March 2020 on dividend distributions during the
COVID-19 pandemic,” Official Journal of the European Union, 2020/C 102 I/01. The European Systemic
Risk Board made a similar recommendation on May 27. See Acharya et al. (2016) for a discussion of bank
dividend payments in the 2007-9 financial crisis and a model of dividend-related externalities across banks.
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a bail-in reduces the bank’s bailout dollar-for-dollar. In this way, our model identifies a new

channel through which bailouts can increase financial fragility: by raising the bank’s cost of

using bail-ins to discourage early withdrawals.

Given these problems, we ask whether regulation can improve outcomes. The regulator

has the ability to restrict all payments the bank makes to investors, which can be interpreted

as limiting dividend payments, imposing withdrawal fees, or writing down the face value of

liabilities. However, because the regulator only observes the bank’s loss after some with-

drawals have been made, it does not know the appropriate level for the initial bail-in. We

formulate the regulator’s decision as a delegation problem in the spirit of Holmström (1977,

1984). The regulator decides to what extent it will require the bank to bail-in the investors

who withdraw early and to what extent it will delegate that decision to the bank. The aim

of the policy is to increase the bail-in applied in states where the bank will later be bailed

out while minimizing the distortion created in states where no bailout occurs. We show that,

as long as the bank is bailed out in some states, regulation can improve welfare.

We characterize the optimal policy and show it takes one of two forms. If parameter

values are such that a run will never occur, regardless of the bank’s choice, the optimal

policy is to impose a minimum bail-in. This minimum will bind in states where the bank’s

loss is large enough for a bailout and also in states where the bank’s loss is small or zero. In

between, the bank chooses a bail-in above the required minimum, which demonstrates the

value of giving it some discretion. For other parameter values, the optimal policy uses the

threat of a run by investors to discipline the bank’s choice. In these cases, the optimal policy

allows the bank to choose from a set of small initial bail-ins or a set of large ones, but not

values in between. The policy is calibrated so the bank would suffer a run if it chose a small

bail-in following a large loss. The desire to avoid a run leads the bank to self-select into a

large bail-in in these states. In cases where a run occurs in the absence of regulation, this

approach improves financial stability as well as welfare.

Overall, our results demonstrate the value of regulating bail-ins early in a crisis, rather

than waiting for more precise information about banks’ losses. Much of the existing policy

discussion has focused on tying bail-ins to information that is observed by regulators, either

publicly or privately. For example, contingent-convertible bonds (CoCos) can be structured

to convert from debt to equity when the book value of a bank’s equity falls below some

pre-specified level.4 In our model, the regulator can solve this ex post problem by imposing

the efficient bail-in on those investors who remain when it observes the bank’s loss. There

is, however, an earlier period when the regulator knows a problem may exist, but does not

yet know how badly the bank is affected. Our results show the value of acting promptly

4See Flannery (2014) for a detailed discussion of CoCos and a review of the relevant literature.
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to bail-in withdrawals made during this period. Even though this policy tool is blunt, the

benefit of increasing the initial bail-in in states where the bank’s loss is large outweighs the

cost of imposing too large of a bail-in in states where the bank is sound.

Related literature. Wallace (1988, 1990) provided an early analysis of bank bail-ins in a

version of the Diamond-Dybvig model with aggregate risk. He showed that when a bank

observes withdrawal demand gradually, through a process of sequential service, the efficient

allocation has a feature that he called “partial suspension of convertibility” but which in

current terminology would be called a bail-in. Subsequent work derived the efficient pattern

of bail-ins within an individual bank for different specifications of the environment; see, for

example, Green and Lin (2003), Peck and Shell (2003), Ennis and Keister (2009b), and

Sultanum (2014). This literature emphasizes that investors want their bank to use bail-ins

to efficiently allocate risk; there is no need for regulation or supervisory bail-ins in these

models. From a policy perspective, this literature broadly supports the type of reforms

adopted for money market mutual funds in the U.S. in 2014. In particular, it suggests

that if intermediaries are allowed to take bail-in actions such as limiting withdrawals and

imposing withdrawal fees, they will do so in times of stress and these actions will promote

financial stability. In our setting, in contrast, the anticipation of being bailed out undermines

the incentive to use bail-ins, rendering such reforms ineffective and creating a rationale for

requiring bail-ins even before policy makers have precise information about a bank’s loss.

Our work also relates to an emerging literature that studies the incentive effects of bail-ins

and the resulting policy tradeoffs. Bernard et al. (2022) study a game in which a regulator

and banks negotiate over the allocation of losses, focusing on how the network structure of

interbank linkages affects the credibility of a no-bailout plan. Walther and White (2019)

study how a bail-in improves a bank manager’s incentive to exert effort by increasing her

stake, but risks provoking a run if it leads creditors to infer the bank is in bad shape.

Colliard and Gromb (2018) study the negotiation between a bank’s shareholders and its

creditors over how the losses will be distributed, while Bolton and Oehmke (2019) study the

problem of coordinating bail-ins in multinational banks. Overall, this literature focuses on

how a regulator should react to the information it receives about about a bank’s situation.

We focus instead on an earlier stage, when the regulator has limited bank-level data and

bank insiders have private information. We show that the regulator should act promptly

rather than waiting for bank-specific information to arrive.
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2 The model

We base our analysis on a version of the Diamond and Dybvig (1983) model in which policy

makers have limited commitment and can provide bailouts, as in Keister (2016).5 We add

private information about the value of the bank’s assets to this framework. In this section,

we describe the agents, preferences, and technologies that characterize the environment, and

we define bail-ins and bailouts within this environment.

2.1 The environment

There are three time periods, labeled t = 0, 1, 2, and a single consumption good.

Investors. A continuum of investors, indexed by i ∈ [0, 1], each have preferences character-

ized by

u(ci1 + ωici2) =
1

1− γ

(
cit + ωici2

)1−γ
, (1)

where cit denotes consumption in period t ∈ {1, 2}. The random variable ωi ∈ Ω ≡ {0, 1} is

realized at t = 1 and is privately observed by the investor. If ωi = 0, she is impatient and

values consumption only in period 1, whereas if ωi = 1, she is patient. Each investor will

be impatient with a known probability π > 0, and the fraction of impatient investors will

also equal π. As is standard, we assume the coefficient of relative risk aversion γ is strictly

greater than 1. Investors are each endowed with one unit of the good at t = 0.

The bank. There is a single technology for storing goods across periods; this technology

pays a gross return of 1 between periods 0 and 1 and R > 1 between periods 1 and 2.

As in Diamond and Dybvig (1983), these returns and the idiosyncratic uncertainty about

preference types ωi create an incentive for investors to pool resources in a bank to insure

against individual liquidity risk. The bank holds the pooled goods in this technology and

each investor can contact the bank to withdraw funds at either t = 1 or t = 2. To simplify

the analysis, we begin with the endowment of investors already deposited in the bank.6

At t = 0, before any decisions are made, the bank experiences a loss whose size is random.

Specifically, a fraction λ of the goods held by the bank become worthless, leaving the bank

with 1− λ units of the good per investor. The loss λ is drawn from a distribution F on the

5Limited commitment was introduced into the Diamond-Dybivg framework by Ennis and Keister (2009a,
2010) and has been used to study a range of topics, including how financial fragility is affected by interest
rates (Li, 2017), inequality (Mitkov, 2019), asset opacity (Izumi, 2021) and competition (Gao and Reed,
2021; Xiao, 2022).
6That is, we do not study what Peck and Shell (2003) call the pre-deposit game, in which investors decide
whether to pool their resources. We discuss how bail-ins would affect the incentive of investors to deposit in
a bank in Section 6.3.
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interval Λ ≡ [0, λ̄]. We assume F is continuous, strictly increasing and differentiable, but

may place positive probability on λ = 0. The bank and investors observe the realization of

λ before making any decisions.

Investors observe λ and their own preference type, then decide in which period to with-

draw. We use yi ∈ {1, 2} to denote the choice of investor i. Those investors who chose to

withdraw in period 1 arrive at the bank one at a time, in a randomly-determined order, and

the bank chooses how much consumption each investor receives. Investors are isolated from

each other during the withdrawal process and must consume immediately after withdrawing.

As in Wallace (1988), this assumption prevents the fiscal authority from being able to tax

past withdrawals when new information is revealed.7

The fiscal authority. There is a benevolent fiscal authority that has access to goods in

period 1 at a marginal cost µ > 0 and the ability to bail out the bank following a loss. After

a fraction π of investors have withdrawn, the fiscal authority observes both the realized value

of λ and the remaining resources in the bank, then chooses a bailout payment b ∈ R+. The

fiscal authority’s objective is to maximize the sum of investors’ utilities minus the cost of

the bailout payment. It is unable to commit to a bailout plan in advance; the payment will

be chosen as a best response to the situation at hand.

Allocations. An allocation in this environment consists of consumption bundle for each

investor and a bailout payment. An allocation is feasible if∫ 1

0

(
ci1 +

ci2
R

)
di ≤ 1− λ+ b. (2)

In other words, the present value of all consumption can be no larger than the value of the

bank’s assets plus the bailout payment.8

The regulator. In Section 6, we introduce a regulator who can restrict the payments the

bank makes to withdrawing investors in period 1. The anticipation of being bailed out

distorts the bank’s incentives in choosing these payments, which may allow regulation to

raise welfare. However, like the fiscal authority, the regulator has limited information; it

observes the bank’s realized loss only after a fraction π of investors have withdrawn.

7The assumption also prevents trading opportunities from undermining the bank’s ability to provide liquidity
insurance. See Jacklin (1987), Allen and Gale (2004) and Farhi et al. (2009), among others, for studies of
how the presence of markets at t = 1 limits the amount of risk-sharing that banks provide to depositors.
8Because the bailout payment is made after a fraction π of investors have withdrawn, feasibility also re-
quires that payments to these investors total no more than the value of the bank’s own assets, 1 − λ. We
place assumptions on parameter values below that ensure the bank’s choices always satisfy this additional
constraint.
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2.2 Bail-ins and bailouts

Our interest is in studying how the bank’s loss λ is divided between between lower con-

sumption for investors (i.e., bail-ins) and a bailout payment. Measuring bail-ins requires

comparing the allocation to some benchmark that investors would receive in normal times.

In this subsection, we first define a reference allocation from which bail-ins are measured.

We then discuss the particular form an allocation takes in our model and how this form

depends on investors’ withdrawal behavior.

A reference allocation. Suppose the bank has experienced no loss (λ = 0). The efficient

allocation of resources then gives a common amount c1 to each impatient investor at t = 1

and a common amount c2 to each patient investor at t = 2. These values are chosen to

maximize investors’ expected utility subject to the feasibility constraint

πc1 + (1− π)
c2
R

≤ 1. (3)

Let (c∗1, c
∗
2) denote the solution to this standard Diamond-Dybvig allocation problem, which

satisfies 1 < c∗1 < c∗2 < R. We consider c∗1 and c∗2 to represent the face value of the bank’s

liabilities to investors who choose to withdraw in periods 1 and 2, respectively. To be clear:

the bank in our model can pay withdrawing investors less than these values following a

loss and will do so whenever it is in investors’ best interests. In this sense, the liabilities

defined above are not contractually binding, and deviating from these payments does not

involve any cost or inefficiency. The reference amounts (c∗1, c
∗
2) simply provide a benchmark

for measuring the portion of the bank’s losses that are borne by its investors.

Bail-ins. Following a loss, it may not be feasible for the bank to pay (c∗1, c
∗
2) to its withdraw-

ing investors. In this case, the bank will choose the best feasible allocation of its resources.

No information is revealed while the first fraction π of investors withdraw in period 1 and,

because investors are risk averse, the bank will choose to give the same amount to each of

them. If these investors receive less than the reference amount c∗1, we say they have been

bailed-in.9 It is convenient to measure the size of the bail-in as the percentage “haircut”

from the reference allocation, that is, as the solution h to

c1 = (1− h) c∗1.

9While some authors apply the term bail-in only to losses imposed on certain types of investors (such as
long-term debt holders) or in certain situations (such as in resolution), we use the term more broadly to
include all losses imposed on a bank’s creditors and investors. Our approach aims to capture, in a unified
way, a variety of policies and actions observed in reality during financial crises, including restrictions on
dividend payments as well as haircuts imposed on depositors, various debt holders, and other creditors.
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In period 2, the bank’s matured assets will be evenly divided among the remaining investors.

Let ĥ denote the bail-in applied to these investors, which satisfies

c2 =
(
1− ĥ

)
c∗2.

If a bank has no loss (λ = 0), it sets h = ĥ = 0 and implements the reference allocation.

If λ > 0, the bank chooses (h, ĥ) to maximize investors’ expected utility from consumption,

subject to feasibility constraints and anticipating the actions of the fiscal authority.

We assume the upper bound on the distribution F satisfies λ̄ ≤ 1 − πc∗1. Recall that

the fiscal authority makes its bailout decision after a fraction π of investors have withdrawn.

This condition thus implies the bank’s loss is never so large that it will run out of resources

before the bailout decision, regardless of its choice of initial bail-in h.

Bailouts. After a fraction π of investors have withdrawn, the fiscal authority observes the

realized value of λ as well as what the bank has left after serving these π withdrawals. It

then chooses a bailout payment b ≥ 0 to maximize the sum of investors’ utilities minus the

cost µb of the bailout. Note that this decision is made after the bank’s initial bail-in h has

been applied to the first π investors, and the fiscal authority cannot commit to the bailout

policy before these withdrawals are made.

Feasibility. Following a loss λ and bailout b, the bank will have 1− λ+ b units of the good

in period 1. Suppose for the moment that patient investors wait until period 2 to withdraw,

so that only a fraction π of investors withdraw at t = 1. Then the feasibility constraint in

equation (2) can be written in terms of the bail-ins (h, ĥ) as

π (1− h) c∗1 + (1− π)
(
1− ĥ

) c∗2
R

≤ 1− λ+ b.

Using equation (3), we can rewrite this constraint as

hπc∗1 + ĥ (1− π)
c∗2
R

+ b ≥ λ. (4)

The first two terms of the left-hand side measure the period-1 value of the bail-ins: an amount

πc∗1 of the bank’s liabilities is bailed in at rate h in period 1, while the amount (1− π) c∗2

that will be bailed in at rate ĥ in period 2 is discounted by the return R. Feasibility requires

the sum of these bail-ins plus the bailout payment b to cover the bank’s loss λ.

Bank runs and resolution. Throughout our analysis, we assume patient investors wait

until t = 2 unless withdrawing early is a strictly dominant strategy. In other words, we do

not focus on the type of self-fulfilling bank runs studied by Diamond and Dybvig (1983) and
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many others. There may, however, be situations in which patient investors receive more by

withdrawing early regardless of the actions of others. In such cases, a bank run is inevitable.10

If investors continue to arrive at the bank in period 1 after π withdrawals have been

made, the bank is placed into resolution. We assume this process stops the run, so subse-

quent withdrawals at t = 1 are made only by impatient investors. In addition, the fiscal

authority observes the fraction of remaining investors who are impatient and conditions the

bailout payment (if any) on this information. When a bank is in resolution, the fiscal au-

thority dictates the bail-ins applied to all remaining investors, which implies that the bank’s

remaining resources will be allocated efficiently among its remaining investors.

Figure 1: Timeline

The sequence of events is summarized in Figure 1, where items in black represent moves

by nature and individual investors, items in blue represent the actions of the bank, and items

in red correspond to the actions of the fiscal authority.

2.3 Discussion

Cost of public funds. The parameter µ measures the fiscal authority’s marginal cost of

resources in the crisis state. One can interpret µ as reflecting the marginal value of public

goods and services that are foregone when the funds are used instead for a bailout, as in

Keister (2016), or as the value of private consumption foregone when additional taxes are

raised. The key assumption we make here is that this marginal value is fixed, independent

of the size of the bailout payment. The assumption would be satisfied, for example, if utility

is linear in the public good or if the size of the equilibrium bailout payment is small relative

10In focusing on bank runs that are driven by the “fundamentals” of the withdrawal game, we follow Chari
and Jagannathan (1988) and Allen and Gale (1998), among others.
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to the overall government budget constraint. We assume the marginal cost µ satisfies

µ > u′ (c∗1) ≡ µ, (5)

which ensures the fiscal authority would not want to bail out the bank when there is no loss.

Number of banks. Our model has a single bank and, therefore, a single realized loss λ.

However, the analysis would be unchanged if there are many banks that receive idiosyncratic

draws from the loss distribution F . The loss in each bank would then be divided between a

bail-in of that bank’s investors and a bailout from the fiscal authority. As long as the fiscal

authority’s marginal cost of funds is unchanged, the outcome at one bank does not effect the

incentives of other banks or their investors.11 We return to the multiple-bank interpretation

of the model in the context of regulatory policy in Section 6.3.

Distribution of loss. We take the distribution F of the bank’s loss as exogenous to our

model. In this sense, our focus is on how a bank’s loss is allocated and not on the deter-

minants of the loss or ex ante moral hazard issues.12 Our approach is particularly relevant

for studying the effects of unexpected economic shocks originating outside of the financial

sector. However, the effects we highlight in our analysis will be present any time banks face

a significant loss, regardless of the underlying cause.

Bank’s objective. The bank chooses how much to pay withdrawing investors with the

objective of maximizing their expected utility from consumption. The cost of funds for any

bailout payment is external to the bank (and its investors). In an economy composed of

many banks, for example, the cost of bailing out any one bank will fall largely on investors

in other banks and on other sectors of the economy. This external effect is what creates a

potential role for regulation, as we discuss in Section 6.

No commitment. Our assumption that the fiscal authority cannot commit to not bail

out the bank follows a large literature on bailouts and seems well aligned with historical

experience.13 This assumption prevents the fiscal authority from using bailout policy to

reward or punish particular choices of initial bail-in by the bank. It can be interpreted as

capturing elements of “too big to fail” in the sense that the fiscal authority finds the costs

11If the fiscal authority’s marginal cost of funds instead changes depending on the size of the aggregate bailout,
strategic interactions emerge as the bail-in chosen by one bank affects the bailouts received by others. See
Keister and Mitkov (2020) for a version of the model in which those effects are present.

12A large literature has studied how government guarantees, both explicit and implicit, affect the riskiness
of banks’ assets and, therefore, the probability of a crisis state. Kareken and Wallace (1978) is one classic
reference. Acharya and Yorulmazer (2007) study how the anticipation of intervention affects the correlation
of banks’ asset choices and, therefore, the distribution F of losses across banks in a crisis.

13See, for example, Farhi and Tirole (2012), Chari and Kehoe (2016), Bianchi (2016), Keister (2016), Nosal
and Ordonez (2016), and Dávila and Walther (2020).
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associated with a large loss λ too high to leave unaddressed. Precisely how large λ must be

to elicit a bailout is endogenous in our model and depends on the bank’s choice of initial

bail-in h as well as on the cost of public funds µ. This interaction between the choice of

bail-in and the subsequent bailout is at the heart of our analysis.

Delayed intervention. The fiscal authority observes the bank’s loss with a delay, reflecting

the idea that banks are likely to have more information about their own situation than is

available to regulators in the early stages of a crisis. In direct terms, this assumption aims to

capture the time required to carry out detailed examinations and to verify the information

that forms the basis for supervisory action. More broadly, the delay in the model can also

represent a variety of practical and political concerns that make policy makers slow to react

to an incipient crisis. (See, for example, Kroszner and Strahan (1996), Brown and Dinc

(2005), Iyer et al. (2016), and Nosal and Ordonez (2016).) The key point for our analysis is

simply that some investors are able to withdraw from a bank facing losses before decisions

about bailouts and bank resolution are implemented.

Informed investors. Investors are informed about the value of the bank’s assets at the

beginning of period 1. Because of sequential service, however, only a fraction π of them

can act on this information before the fiscal authority intervenes. In effect, the private

information is only relevant for this group of investors, which we interpret as representing

insiders to the bank.14 Assuming that all investors are informed and, hence, face the same

decision problem helps simplify the presentation of our model. The important point, however,

is that some investors are able to act on their information before intervention occurs.

Resolution. We assume the bank is placed in resolution as soon as it becomes apparent

to the fiscal authority that a run is underway. Once in resolution, the bank’s available re-

sources – including any bailout it receives – are allocated efficiently among its remaining

investors. There are a variety of ways to implement this resolution, all of which lead to the

same outcome in our model. One could, for example, think of a court system intervening

to verify investors’ preference types, as discussed in Ennis and Keister (2009a). Alterna-

tively, one could allow investors to write a “living will” that specifies how their bank will

be operated following a run and intervention. Because there are no further bailouts at this

point, investors’ incentives are no longer distorted and the allocation of the bank’s remaining

resources will be the same regardless of who chooses the payments. Our approach of having

the fiscal authority dictate all remaining payments serves only to simplify the notation.

14Several studies have highlighted the importance of withdrawals by bank insiders in the period before regu-
latory actions and/or bank failure occur. See, for example, Acharya et al. (2011), Henderson et al. (2015),
and Iyer et al. (2016).
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3 A planner’s problem

In this section, we derive the combination of bail-ins and bailouts that would be chosen by a

benevolent planner who controls the operations of the bank, investors’ withdrawal decisions,

and the actions of the fiscal authority. This planner observes all of the information available

to investors, including the bank’s loss and each investor’s preference type, and wants to

maximize investors’ expected utility minus the cost of bailouts.

The planner will direct all impatient investors to withdraw at t = 1 and all patient

investors to withdraw at t = 2. Given the realized loss λ, the planner will choose the bail-ins

(h, ĥ) and the bailout b to maximize

πu ((1− h) c∗1) + (1− π)u
(
(1− ĥ)c∗2

)
− µb

subject to the feasibility constraint in equation (4) and the non-negativity restrictions

h ∈ [0, 1], ĥ ∈ [0, 1], and b ≥ 0.

Let {h∗, ĥ∗, b∗} denote the solution to this problem, which we call the efficient plan. Our

first result shows that the planner will impose the same bail-in on all investors.

Proposition 1. The efficient plan satisfies h∗ = ĥ∗ for all λ ∈ Λ.

Proofs of all propositions are provided in an online appendix. The result in Proposition 1

relies on the form of the utility function in equation (1), which implies investors’ expected-

utility preferences are homothetic. The efficient levels of consumption for impatient and

patient investors thus scale down in proportion when the bank experiences a loss.

Using Proposition 1 together with the resource constraint for the reference allocation in

equation (3), we can rewrite the feasibility constraint (4) in a particularly simple form:

h+ b ≥ λ. (6)

In other words, the loss λ must be covered by a combination of bail-ins h of the bank’s

investors and bailouts b by the public sector. Our next result characterizes the planner’s

choice of this division. Define λ∗ to be the loss such that the marginal utility of impatient

investors when there is no bailout exactly equals the marginal cost of public funds, that is,

u′
(
(1− λ∗)c∗1

)
= µ or λ∗ = 1− 1

µ
1
γ c∗1

. (7)
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(a) Allocation of bank’s loss λ (b) Bailout cutoff as fiscal cost varies

Figure 2: The efficient allocation

Note that our assumption in equation (5) implies λ∗ > 0. We then have the following result.

Proposition 2. The efficient plan
(
h∗, ĥ∗, b∗

)
sets

h∗ = ĥ∗ =

{
λ

λ∗

}
and b∗ =

{
0

λ− λ∗

}
as λ

{
≤
>

}
λ∗.

The efficient plan is characterized by a maximum bail-in of λ∗. When the bank’s loss is

smaller than this maximum, the efficient bail-in h∗ equals the total loss and no bailout is

received. When the bank’s loss is larger than λ∗, the maximum bail-in is applied and the

remaining loss is covered by a bailout. In this way, the planner uses public resources to

provide insurance against large losses, but not against smaller ones.

Panel (a) of Figure 2 illustrates this result.15 The graph shows, in each state λ, how

the loss is divided between a bail-in of the first π investors to withdraw (bottom region,

light-blue), a bail-in of the remaining (1− π) investors (middle region, darker blue), and a

bailout (top region, red). Note that the relative sizes of the first two regions are the same

for all λ, in line with Proposition 1. When the loss is smaller than λ∗, these bail-ins cover

the entire loss and there is no bailout. When the loss is larger than λ∗, the bail-ins take the

maximum value and the bailout covers the remaining loss.

The cutoff value λ∗ depends critically on the marginal cost of resources µ for the fiscal

authority, as show in equation (7) and illustrated in panel (b) of the figure. When µ is equal

to the lower bound µ in equation (5), we have λ∗ = 0 and the bank receives a bailout even

15All of the numerical examples in the paper use γ = 2, π = 1/2 and R = 1.5. The distribution F places
measure 1/2 on λ = 0 and the remaining measure is uniformly distributed on Λ = [0, 0.4]. Panel (a) of
Figure 2 uses µ = 1.
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if it experiences a very small loss. As the marginal value of public resources increases, the

optimal bailout policy becomes less generous and the cutoff λ∗ rises. When µ is large enough,

the cutoff equals the upper bound of the loss distribution λ̄, meaning the bank is not bailed

out even if it experiences the largest possible loss.

4 Decentralized allocations

We now return to the decentralized economy, where the initial bail-in is chosen by the bank,

withdrawal decisions are made by investors, and the bailout is chosen by the fiscal authority.

In this section, we derive the allocation that results from each possible choice of the initial

bail-in h by working backward through the timeline in Figure 1. We start with the allocation

of consumption to the remaining investors at point (d), then move to the bailout decision

at point (c) and investors’ withdrawal choices at point (b). Together, these actions generate

a mapping from the initial bail-in h to the resulting allocation. In Section 5, we use this

mapping to characterize the bank’s optimal choice of h at point (a) in the timeline.

4.1 Remaining withdrawals

At point (d) in the timeline, a fraction π of investors have already withdrawn and consumed.

Let h denote the bail-in that was imposed on these initial withdrawals, and let b denote the

bailout payment that was made by the fiscal authority at point (c). Then the resources the

bank has available for each of its (1− π) remaining investors at point (d) are

ψ(h, b) ≡ 1− λ− π (1− h) c∗1 + b

1− π
. (8)

The composition of these remaining investors between patient and impatient types depends

on the withdrawal decisions made at point (b). Let y ∈ {1, 2} denote the action of patient

investors, which is necessarily symmetric because we assume they run only when doing so is

a strictly dominant strategy. If y = 2, meaning patient investors chose to wait, the first π

withdrawals were made by impatient investors and all remaining investors at point (d) are

patient. Each of these investors will receive Rψ at t = 2. If y = 1, the bank experienced a

partial run at point (c) and the remaining investors are a mixture of patient and impatient

types. In this case, the bank is placed into resolution and the fiscal authority allocates the

remaining resources to maximize the sum of these investors’ utilities. It is straightforward to

show the solution to this allocation problem gives ψc∗1 to each remaining impatient investor
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at t = 1 and ψc∗2 to each remaining patient investor at t = 2.16 Converting these consumption

values into haircuts shows the bail-ins faced by the remaining investors to be

ĥ (h, y, b) =

{
1− R

c∗2
ψ (h, b)

1− ψ (h, b)

}
as y =

{
2

1

}
. (9)

Given an initial bail-in h, withdrawal behavior y, and bailout b, equations (8) and (9)

show how the resources remaining in the bank at point (d) in the timeline will be allocated.

Let V (ψ, y) denote the average utility of the bank’s remaining investors, that is,

V (ψ, y) ≡

{
u (Rψ)

πu (ψc∗1) + (1− π)u(ψc∗2)

}
as

{
y = 2

y = 1

}
. (10)

4.2 Bailout payment

We next consider point (c) in the timeline, where the fiscal authority makes its bailout

decision. It recognizes the bank’s remaining resources will be utilized as derived above and,

given h and y, chooses the bailout b to maximize

(1− π)V (ψ(h, b), y)− µb

subject to the non-negativity constraint b ≥ 0. The first-order condition for this problem is

V1 (ψ (h, b) , y) ≤ µ with equality if b > 0. (11)

If this condition holds with equality, it is straightforward to show that the bail-in imposed

on the remaining investors, ĥ, is equal to λ∗. In other words, if the bank is bailed out, b will

be chosen so the bank’s remaining investors are bailed in at the same rate that the planner

would chose when the bank is bailed out.To determine whether or not the bank is bailed out,

we compare λ∗ to the bail-in the remaining investors would face if there were no bailout,

denoted ĥNB. Substituting equation (8) into equation (9) and setting b = 0, we have

ĥNB (h, y) =

 1−
(

R
c∗2

)
1−λ−π(1−h)c∗1

1−π

1− 1−λ−π(1−h)c∗1
1−π

 as y =

{
2

1

}
. (12)

16This result is similar in spirit to Proposition 1 and also relies on the form of the utility function in equation
(1). If preferences did not have the constant-relative-risk aversion form, the analysis would be similar but
the efficient allocation of bank’s remaining resources would apply different bail-ins to the remaining patient
and impatient investors following a run.
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The following result uses ĥNB to characterize the fiscal authority’s choice of bailout payment

and the bail-in ĥ of the bank’s remaining investors.

Proposition 3. Given h and y, the bail-in of remaining investors ĥ and bailout b satisfy:

(i) if ĥNB (h, y) ≤ λ∗, then ĥ (h, y) = ĥNB (h, y) and b (h, y) = 0

(ii) if ĥNB (h, y) > λ∗, then ĥ(h, y) = λ∗ and

b (h, y) =

 (1− πc∗1)
(
ĥNB (h, 2)− λ∗

)
(1− π)

(
ĥNB (h, 1)− λ∗

)  as y =

{
2

1

}
. (13)

If the bail-in investors would face with no bailout is less than λ∗, the fiscal authority will

not bail out the bank. If it is larger, the fiscal authority will provide a bailout than lowers

the bail-in of remaining investors to λ∗. The size of the bailout required to achieve this

outcome depends not only on the bank’s remaining resources, but also on the composition

of its remaining depositors between patient and impatient types, as shown in equation (13).

Overall, Proposition 3 shows that, after the first π withdrawals have occurred, the al-

location of the bank’s remaining loss takes the same general form as the solution to the

planner’s problem characterized in Proposition 2. In particular, the bailout policy ensures

the remaining investors never experience a bail-in larger than λ∗, and the bank is not bailed

out when a smaller bail-in is required to cover the losses. Looking ahead, however, Propo-

sition 3 also illustrates how the equilibrium bailout policy will tend to distort the bank’s

choice of initial bail-in h. A smaller initial bail-in will leave the bank with fewer resources,

increasing ĥNB. Equation (13) shows the fiscal authority will respond with a larger bailout

b, effectively rewarding the bank for its choice. This incentive distortion creates a wedge

between the equilibrium outcome and the efficient plan.17 Before discussing this wedge in

detail, we need to analyze investors’ withdrawal choices.

4.3 Withdrawal choices

At point (b) in the timeline, investors choose when to withdraw. Impatient investors only

value consumption in period 1 and, therefore, always choose to withdraw early. A patient

investor chooses to withdraw in whichever period she would receive more. She anticipates

that the bailout at point (c) and the subsequent bail-in of remaining investors at point (d)

will be as described above. Using the function ĥ defined in equation (9), waiting to withdraw

17Note that this wedge would not arise if the fiscal authority could commit in advance to a bailout schedule
that depends on the realized loss λ but not on the bank’s choice of initial bail-in h. The inability to commit
to such a plan is why bailouts distort incentives.
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is a best response for a patient investor if and only if

(1− h) c∗1 ≤ (1− ĥ)c∗2.

The bail-in ĥ on the right-hand side of this condition depends on whether the bank is

bailed out, which itself depends on investors’ withdrawal behavior as shown in Proposition

3. We can determine this withdrawal behavior in two steps. First, suppose ĥNB(h, 2) > λ∗,

meaning the bank would be bailed out if there is no run. Equation (12) shows that ĥNB

becomes larger if a run occurs, so the bank would be bailed out following a run as well.

Either way, Proposition 3 shows that a patient investor who waits will receive (1 − λ∗)c∗2.

Notice this value does not depend on the withdrawal behavior of other investors. The

strategic complementarity that usually generates multiple equilibria in the Diamond-Dybvig

framework is absent here because the bailout makes up for the additional losses created by

a run.

If ĥNB(h, 2) ≤ λ∗, the bank will not be bailed out if there is no run. In this case, the

standard strategic complementarity is present and the withdrawal game may have multiple

equilibria. In particular, equation (12) shows how early withdrawals by other patient in-

vestors increase the bail-in ĥNB of the remaining investors and thus increase the incentive

to withdraw early. Given that this type of bank run has been extensively studied, we do not

focus on it here. Instead, we assume that patient investors withdraw early only if doing so

is a strictly dominant strategy. Patient investors’ withdrawal behavior thus given by

y(h) =

{
2

1

}
as (1− h)c∗1

{
≤
>

}(
1−min{ĥNB (h, 2) , λ∗}

)
c∗2. (14)

The next proposition shows that both investors’ withdrawal behavior and the bailout

payment are monotone functions of the bank’s initial bail-in.

Proposition 4. The function y(h) in equation (14) is weakly increasing. The composite

function b (h, y(h)) defined by equations (13) and (14) is decreasing in h and is strictly

decreasing whenever b(h, y(h)) > 0.

These results are intuitive. First, a larger bail-in makes withdrawing early less attractive

and thus decreases the incentive for patient investors to run. Second, a larger bail-in also

leaves the bank with more resources when the bailout decision is made, which leads the fiscal

authority to provide a smaller bailout.
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4.4 Payoffs

To summarize the analysis in this section, it is helpful to look back at the timeline in Figure 1.

Given the realized loss λ and the bank’s choice of initial bail-in h at point (a) in the timeline,

equation (14) uniquely determines investors’ withdrawal behavior at point (b). Given this

withdrawal behavior, Proposition 3 determines the bailout chosen by the fiscal authority at

point (c), and then equations (8) and (10) determine how the bank’s remaining resources

are allocated at point (d). In other words, we now have a mapping from the bank’s choice

of initial bail-in h to the resulting allocation of consumption and the associated bailout. We

can use this mapping to write investors’ indirect utility as a function of the bail-in h as

WB (h;λ) = πu
(
(1− h)c∗1

)
+ (1− π)V

(
ψ
(
h, b[h, y(h)]

)
, y(h)

)
. (15)

This expression illustrates the four ways in which the choice of initial bail-in h affects in-

vestors’ payoffs. The first term is straightforward: a larger bail-in directly reduces the

consumption of the first π investors to withdraw. For the remaining 1 − π investors, the

bail-in increases the bank’s remaining resources before the bailout decision is made, but may

decrease the bailout payment. It also discourages early withdrawals. We include λ as an

argument of the function WB to emphasize that all of these relationships depend on the size

of the bank’s loss.

The relationship between h and aggregate welfare, including the cost of the bailout pay-

ment, is given by

WR (h;λ) = WB (h;λ)− µb
(
h, y (h)

)
.

The subscript R indicates that this expression will be the objective function for the reg-

ulator in Section 6. Before discussing regulation, however, we analyze how the incentives

represented in equation (15) determine the bank’s choice of initial bail-in h.

5 The initial bail-in

In this section, we characterize the initial bail-in h the bank chooses in the absence of regu-

lation. We also derive the resulting bailout payment and withdrawal decisions of investors.

In broad terms, we show that the initial bail-in is too small, the bailout is too large, and

these distortions sometimes causes a run on the bank.
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5.1 The incentive to bail in

We first discuss the bank’s bail-in incentives holding fixed whether or not the bank is bailed

out. If the bank anticipates no bailout, regardless of its initial bail-in, it is straightforward

to show that the optimal choice is h = λ. Substituting this choice into equations (8) and (9)

when b = 0 yields ĥ = λ as well, meaning the bank’s loss is shared evenly by all investors.

In other words, in the absence of bailouts, the bank would choose the same bail-ins as in the

efficient plan (see Propositions 1 and 2).

If the bank anticipates being bailed out, in contrast, Proposition 3 shows that the bail-in

ĥ of its remaining investors will equal λ∗ regardless of the initial bail-in h. Holding the

withdrawal decisions of investors fixed, therefore, the bank will want to set the smallest

bail-in possible, h = 0. In this way, bailouts distort the bank’s incentive to bail in. Why

impose any loss on these first π investors if doing so reduces the bailout the bank will receive

dollar-for-dollar?

There is an important exception to this logic: in some situations, setting h = 0 will

lead to a run on the bank. The bank can prevent this run by setting its initial bail-in

appropriately. Equation (14) shows that investors will not run when the bank is bailed out

as long as (1−λ∗)c∗2 ≥ (1− h) c∗1. Let h denote the smallest initial bail-in h that will prevent

a run, that is,

h ≡ max

{
1− (1− λ∗)

c∗2
c∗1
, 0

}
. (16)

We show below that, for some parameter values, the bank will set h = h > 0. In these cases,

the desire to avoid a run partially offsets the incentive distortion created by bailouts. Notice,

however, that c∗2 > c∗1 implies h < λ∗. Even in these cases, the bank’s choice of initial bail-in

is still strictly smaller than in the efficient plan.

This discussion establishes that the initial bail-in will take one of three values when there

is no regulation, λ, h, or 0, and the bank’s optimal choice depends on whether it anticipates

being bailed out. In many cases, however, whether the bank is bailed out depends on the

bail-in it chooses, since a larger bail-in leaves the bank in better condition. The bank then

faces a tradeoff. Setting a low initial bail-in (0 or h) leads to a bailout, which increases

the bank’s total resources. However, the low bail-in allocates these resources less efficiently

across investors than a larger bail-in would. Whether the bank is bailed out thus depends on

which of these two forces dominates, which in turn depends on the generosity of the bailout

policy, as we show below.
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5.2 Optimal choice of bail-in

We divide the analysis of the bank’s choice of h into three cases depending on the govern-

ment’s marginal cost of funds µ, which determines the generosity of the bailout policy.

Low cost of funds. If the government’s cost of funds is low enough, h as defined in equation

(16) is zero. This case obtains when

1− λ∗ ≥ c∗1
c∗2

= R− 1
γ

or, using the definition of λ∗ in equation (7), when

µ ≤ R (c∗1)
−γ ≡ µ1.

If the bank anticipates being bailed out in this case, it can set h = 0 without provoking

a run. Our next result characterizes the outcome for this case. We use he to denote the

bank’s optimal choice of initial bail-in; ye and be denote the resulting withdrawal behavior

and bailout payment, respectively.

Proposition 5. There exists λe1 < λ∗ such that, when µ ≤ µ1, the bank is bailed out if and

only if λ > λe1. In this region, the bank sets he = 0, patient investors do not run (ye = 2),

and the equilibrium bailout payment is

be = λ− λ∗ + λ∗πc∗1 > b∗.

This proposition shows bailouts are more frequent (λe1 < λ∗) and larger (be > b∗) than

in the efficient allocation. In particular, be equals the efficient bailout b∗ (= λ − λ∗) plus

a term that represents the bail-in λ∗ the planner would have applied to the πc∗1 funds that

have already been withdrawn. In other words, the loss that was not imposed on these early

withdrawals ends up falling entirely on the public sector, which leads the bank to set he = 0.

Panel (a) of Figure 3 illustrates the results by depicting the allocation of the bank’s loss

for the same parameter values as panel (a) of Figure 2, which satisfy µ < µ1. Comparing the

two figures shows that the bailout region is larger in the decentralized allocation (λe1 < λ∗).

In addition, there is no light-blue region when λ > λe1; the bank sets he = 0 and all of the

loss falls on the remaining investors and the public sector in this region. As a result, the

size of the bailout payment (the red region) is larger for any λ > λe. For λ < λe1, there

is no bailout and the bail-ins divide the loss proportionally between impatient and patient

investors, as in the efficient plan.
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(a) µ ≤ µ1 (b) µ1 < µ < µ2

(c) µ > µ2

Figure 3: Decentralized allocation of losses

Moderate cost of funds. When µ is greater than µ1, h as defined in equation (16) is strictly

positive and the bank will experience a run if it sets h = 0 and is bailed out. The bank can

prevent a run, but doing so is costly because a bail-in of period 1 withdrawals is needed to

induce patient investors to wait. Our next result shows that, when the government’s cost of

funds is not too high, the bank is willing to pay this cost.

Proposition 6. There exist µ2 > µ1 and λe2 < λ∗ such that, when µ1 < µ < µ2, the bank is

bailed out if and only if λ > λe2. In this case, the bank sets he = h > 0, patient investors do

not run (ye = 2), and the equilibrium bailout payment is

be = λ− λ∗ + (λ∗ − h) πc∗1 > b∗.

In this region, the bank’s desire to avoid a run partially offsets the moral hazard problem

created by bailouts. The bailout be again equals the planner’s bailout b∗ plus a term that
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represents, for the πc∗1 funds that have already been withdrawn, the difference between the

bail-in the planner would have applied (λ∗) and the bail-in the bank did apply (h). This

expression shows how the bank’s response to the threat of a run decreases the burden that

falls on the public sector. The bank’s incentive in choosing he is still distorted, of course,

and h < λ∗ implies the equilibrium bailout is still inefficiently large.

Panel (b) of Figure 3 illustrates the implications. Unlike in panel (a), the initial bail-in

h is now positive for all λ > 0 (the light-blue region), which decreases the size of the bailout

payment (the red region). The higher cost of public funds also makes bailouts less frequent

(the threshold λe is higher). Bear in mind, however, that a larger value of µ also increases

the efficient bailout cutoff λ∗, as shown in equation (7) and illustrated in panel (a) of Figure

4 below. Overall, Proposition 6 shows that bailouts are again more frequent and larger than

in the efficient allocation.

High cost of funds. The final case is where the government’s cost of funds is higher than

µ2. In this case, the bail-in λ∗ imposed on remaining investors following a bailout will be

relatively large. Preventing a run would require the bank to set a large initial bail-in h as

well. Our next result shows that the bank finds preventing a run too costly in this case and

instead sets its initial bail-in to zero.

Proposition 7. There exists λe3 < λ∗ such that, when µ > µ2, the bank is bailed out if and

only if λ > λe3. In this case, the bank sets he = 0, patient investors run (ye = 1), and the

equilibrium bailout payment is

be = λ− λ∗ + λ∗πc∗1 + (1− λ∗)π(c∗1 − 1).

As in the previous two cases, bailouts are more frequent and larger than in the efficient

allocation. The new feature is that a partial bank run occurs, which creates a further

misallocation of resources. The bank could prevent this run by setting the initial bail-in

high enough. However, when h is very large, the cost of preventing a run outweighs the

benefit. The bank allows the run to occur, recognizing that some of the additional losses

will be recovered through a larger bailout. The proposition shows that be now equals the

efficient bailout b∗ plus two additional terms. The first of these terms represents the loss

that was not imposed on the first π investors, as in Proposition 5. The final term represents

the portion of the additional loss caused by the run that falls on the public sector. Panel

(c) of Figure 3 shows the allocation of the bank’s loss in this third case. Above the bailout

cutoff λe3, the bank sets he = 0 and there is no light blue region. In addition, the sum of

the bail-in of remaining investors (medium blue) and the bailout (red) now exceed the loss

λ because they must also make up for the misallocation of resources created by the run.
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As we continue to increase µ, the bailout cutoff λe eventually crosses the upper bound

of the loss distribution, λ̄. Beyond this point, the cost of public funds is so high that the

bank is not bailed out in any state and the resulting allocation is always efficient. For the

remainder of the analysis, we assume the bank is bailed out in some states, so an incentive

distortion arises. This condition is satisfied as long as µ is not too far above µ2.

5.3 Summary of results

While Propositions 5 - 7 differ in their details, a clear pattern emerges. In all three cases,

the initial bail-in is inefficiently small when the bank is bailed out, and bailouts are more

frequent and larger than in the efficient allocation. Figure 4 illustrates the inefficiency that

arises along each of these margins. Panel (a) compares the decentralized and efficient initial

bail-ins h as the cost of public funds µ varies, focusing on the largest possible loss, λ̄. In line

with Propositions 5 - 7, the decentralized bail-in is zero when the cost of public funds is either

low or high, but positive in the intermediate range where the bank sets he = h to prevent

a run. Even in this region, the figure shows the decentralized bail-in is always smaller than

the planner’s choice. Panel (b) plots the efficient and decentralized bailout cutoffs. Both

cutoffs are increasing in µ, but the decentralized cutoff λe is always smaller. For some values

of µ, the efficient cutoff lies at the upper bound of the distribution of λ, meaning the planner

would never bail the bank out, but a bailout still occurs in the decentralized economy when

the loss is large enough. Finally, panel (c) compares the efficient and decentralized bailouts,

again assuming bank has suffered the largest possible loss, λ̄. The figure shows that both

bailout payments are decreasing in the cost of public funds, but the decentralized bailout

be is always larger. The decentralized bailout be jumps up at µ2 because of the change in

withdrawal behavior: a run by patient investors leaves the bank in worse condition, which

the fiscal authority responds to with a larger bailout payment.

5.4 Discussion

Source of fragility. Many papers follow the original Diamond-Dybvig approach of assum-

ing a bank must pay withdrawing depositors at face value even after a loss has occurred or it

becomes clear a run is underway. (See, for example, Allen and Gale, 1998, Cooper and Ross,

1998, and Goldstein and Pauzner, 2005.) This approach generates a bank run equilibrium,

but it is at odds with recent reforms that increase intermediaries’ ability to impose losses

on creditors. In the absence of bailouts, investors would want their bank to use these tools

to prevent runs and efficiently allocate its losses. Other papers allow bail-ins and instead

generate fragility by using information structures that make the bank to slow to identify a
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(a) Initial bail-in (b) Bailout cutoff

(c) Bailout payment

Figure 4: Inefficiency of the decentralized allocation

run. For example, investors may condition their withdrawal decisions on a sunspot variable

that is unobserved by the bank (as in Peck and Shell, 2003, Ennis and Keister, 2010, and

others). Bank runs may be prevented in these models if the bank can detect a run quickly

enough, perhaps using an indirect mechanism (as in Andolfatto et al., 2017), or can credibly

reveal information about withdrawals as they occur (as in Huang, 2023).

Our model offers a different view of the underlying cause of financial fragility. The

contracting and information frictions used in the existing literature are absent; the bank can

freely choose the initial bail-in h and perfectly forecasts equilibrium withdrawal behavior.

The bank has the usual incentive to avoid a run, which misallocates resources and lowers

investors’ welfare. However, preventing a run may be costly because the initial bail-in needed

to deter early withdrawals would decrease the bank’s subsequent bailout. This tradeoff

generates an alternative theory of fragility: it results from the bank’s anticipation of being

bailed out by a fiscal authority with limited commitment, which makes preventing a run

privately costly. This theory has novel implications for regulation, which we explore in

Section 6.
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Bailouts vs. fire sales. Other factors may also distort a bank’s bail-in incentives, such as a

fire-sale externality that makes the social cost of liquidating investment at t = 1 higher than

the private cost. However, such factors would not generate the type of fragility we identify

here. A fire sale externality would increase the social benefit of bailing-in but would not lead

the bank to decrease its initial bail-in relative to a benchmark case with no distortions. A

bailout, in contrast, undermines the private incentive to bail in relative to this benchmark.

In other words, bailouts make preventing a run costly for the bank in a way that a fire sale

externality would not.

Disciplining effect of runs. Our model also shows, however, that bailouts do not com-

pletely undermine a bank’s incentive to use bail-ins. In some situations, the threat of a run

leads the bank to bail-in its investors, even though doing so is costly. This disciplining role of

bank runs is similar in spirit to Calomiris and Kahn (1991) and Diamond and Rajan (2001),

where depositors design a fragile banking contract that will lead to a run if the banker tries

to misappropriate funds. The moral hazard problem is different, of course; in our setting

the incentives of the bank’s investors as a group are distorted, rather than the incentives of

a self-interested banker. But our model shares with these papers the idea that the threat of

a run can partially mitigate distorted incentives.

6 Regulation

Our analysis so far allows the bank to choose any initial bail-in h ≥ 0. The resulting outcome

is inefficient: the initial bail-in is too small and bailouts are both too frequent and too large.

The outcome can also involve a run on the bank in some cases. These results raise the

question of whether regulation can improve outcomes. In this section, we show the regulator

can raise welfare by restricting the values of h the bank is allowed to choose.

If the regulator could observe the bank’s loss λ at the beginning of period 1, it would

mandate the bank set the planner’s initial bail-in, h∗(λ). It is straightforward to show

that the subsequent actions – the withdrawal decisions of investors, the bailout b, and the

remaining bail-in ĥ – would all match the planner’s allocation as well. However, like the fiscal

authority, the regulator observes bank-specific information only with a delay, after a fraction

π of investors have withdrawn. The regulator wants the initial bail-in h to be a function of

λ, which is the private information of the bank. It could give the bank discretion in setting

h, but it knows the bank prefers to set the bail-in too low in some states. The choice of

what restrictions to place on the bank can be formulated as a delegation problem following

Holmström (1977, 1984) and others. We study this formulation below and characterize the

optimal regulatory policy.
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6.1 A delegation problem

As is standard in the delegation literature, our model has an uninformed principle (the

regulator) who faces an informed agent (the bank). The bank is biased toward selecting a

smaller bail-in, but only in states where it is bailed out.18 We allow the regulator to choose a

set of allowable bail-ins D, which can be any compact subset of the unit interval. The bank

must then pick its initial initial bail-in h from this set. Restricting the bank’s choice set

is the regulator’s only policy tool. In particular, the regulator cannot use state-contingent

transfers to reward or punish the bank once the true state has been revealed. All transfers

are made by the fiscal authority, as above, and are chosen to maximize ex post welfare.

After the regulator has chosen the delegation set D, the bank observes its realized loss λ

and chooses an initial bail-in h from this set,

max
h∈D

WB(h;λ). (17)

Our analysis in the previous section corresponds to setting D = [0, 1]. Our first result in

this section establishes that two basic properties of the solution to the bank’s problem in the

previous section carry over to an arbitrary closed subset D of the unit interval.

Proposition 8. For any closed delegation set D, (i) a solution to the bank’s maximization

problem (17) exists for every λ ∈ Λ, and (ii) there exists λeD ∈ Λ such that the bank is bailed

out in this solution if any only if λ > λeD.

The solution to the problem in equation (17) may not be unique; in some cases, the

bank may be indifferent between two or more elements of D. In these cases, we assume the

bank chooses the largest of the optimal values, which will minimize the associated bailout.

Using this tie-breaking rule, the bank’s optimal choice generates a function heD : Λ → D that

assigns an initial bail-in he to each possible loss λ. The regulator’s optimization problem

can then be expressed as

max
D

W(D) ≡
∫ λ̄

0

WR (heD(λ);λ) dF (λ). (18)

If the bank were not bailed out in any state, the objectives of the regulator and the bank

would be fully aligned. There would then be no benefit from restricting the bank’s choice and

full delegation (D = [0, 1]) would be optimal. At the other extreme, if the bank were bailed

out in every state, no delegation would be optimal. The planner’s bail-in would equal λ∗ in

18In the standard delegation model, the agent’s bias is exogenously determined by preferences. Here, in
contrast, the set of states in which the bias appears is endogenously determined.
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all states and the regulator could implement the efficient plan by giving the bank a single

choice: D = {λ∗}. In our environment, where the bank is bailed out in some states and not

in others, the regulator faces a tradeoff: more delegation is useful in states where the bank

is not bailed out but costly in states where a bailout occurs. In the analysis that follows, we

characterize the optimal choice of D and show that it represents partial delegation.

First, a technical issue: The regulator’s problem in equation (18) will typically have many

solutions. In particular, starting from one optimal set, removing elements the bank does not

choose for any loss λ will lead to the same outcome. To simplify the analysis and facilitate

interpretation of the results, we focus on the largest delegation set that solves the regulator’s

problem, that is, the set that imposes the fewest restrictions on the bank’s choice. Let D∗

denote the largest subset of [0, 1] that solves the regulator’s problem (18).

6.2 Optimal policy

We divide the analysis into cases based on the public sector’s marginal costs of funds, as

before. Our first result characterizes the optimal policy when the cost of funds is low.

Proposition 9. If µ ≤ µ1, then D
∗ = [h∗1, 1] with h

∗
1 > 0.

The optimal policy in this case takes a particularly simple form: a minimum bail-in h∗1 > 0.

The bank is allowed to set h larger than h∗1, and will do so in some states, but it must meet

the minimum in all states. This type of result, where the optimal policy “caps” the agent’s

action against her bias, has been shown in the literature to arise in a range of settings.19

Panel (a) of Figure 5 presents the allocation of losses under the optimal policy for the

same parameter values as in panel (a) of Figure 3, which satisfy µ < µ1. Comparing the

two panels highlights the policy’s key effects. First, in states where the bank is bailed out,

some of the loss now falls on the first π investors to withdraw (the light blue region), which

makes the bailout (the red region) smaller. Second, the policy shifts the bailout cutoff λeD to

the right, meaning the bank is bailed out in fewer states. In this way, the policy decreases

bailouts on both the intensive and extensive margins. The cost of the policy is the distortion

it creates in states where the bank has a small or zero loss but must now impose a bail-in.

The optimal value for the minimum bail-in h∗1 balances the benefits against this cost.

Proposition 9 shows that the optimal minimum bail-in is always strictly positive. Intu-

itively, the allocation of resources in states where the bank has little or no loss was efficient

in the economy with no regulation. Increasing h1 above zero thus initially has only has

a second-order effect on investors’ expected utility in these states. The welfare gain from

19See, for example, Amador and Bagwell (2013), Kartik et al. (2021), and the references therein.
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imposing a bail-in in states where the bank is bailed out, in contrast, is first order. Notice

that partial delegation is important for this result to obtain. If the regulator required the

bank to set h = h∗1 in all states, the cost of distorting the allocation in states where the bank

is not bailed out would be first order and regulation might be undesirable. By allowing the

bank to set a higher bail-in in some states, partial delegation decreases the cost of requiring

a bail-in. Panel (a) of Figure 5 shows that the bank takes advantage of this option and

chooses a bail-in larger than h∗1 in some states below the bailout cutoff.

(a) A minimum bail-in (b) Leveraging the threat of a run

(c) Eliminating the run equilibrium

Figure 5: Optimal regulation

Our next result shows that when the cost of public funds is higher, the optimal policy

may again be a minimum bail-in or may be more complex. A technical complication arises

in this case. In some situations, the regulator would like banks to be able to choose bail-ins

arbitrarily close to h as defined in equation (16), but not h itself. If the regulator chose

such a set D, however, the bank’s optimization problem in equation (17) will not have an

exact solution in some states. To avoid this complication, we require the regulator to choose
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a closed set (in line with Proposition 8) and we study approximately-optimal policies that

allow bail-ins within ε of h, where ε is small.

Proposition 10. If µ > µ1 then D∗ = [h0, h− ε] ∪ [h1, 1] with 0 ≤ h∗0 ≤ h ≤ h∗1 < 1.

Moreover, at least one of h∗0 ≥ 0 and h∗1 ≥ h holds with strict inequality.

The optimal delegation set when µ is large can be expressed as a union of two disjoint

intervals. In some cases, h∗0 is large enough that the first interval is empty. The optimal

policy is then a minimum bail-in h∗1, as before, but with the minimum now bounded below

by h > 0, the smallest bail-in that prevents a run when the bank is in the bailout region.

This form of policy will tend to be optimal when the probability of a small or zero loss is

low, since the large minimum bail-in will substantially distort the allocation in those states,

and when the probability of a loss in the bailout region is high.

In other cases, h∗0 is smaller and both intervals are non-empty. In these cases, the optimal

policy leverages the disciplining effect of runs. Panel (b) of Figure 5 illustrates the idea, using

the same parameter values as panel (b) of Figure 3. The lower bounds of the two intervals

in D∗ are selected so that, when the state is in the bailout region, the bank prefers choosing

h∗1 and preventing a run over choosing h∗0 and suffering a run. In other words, the policy

is calibrated so the threat of a run leads the bank to select h∗1 in this region even though

smaller bail-ins are permitted. The bank chooses bail-ins from the lower interval only when

it is strong enough that there is no bailout and investors have no incentive to run.

The regulator sets h∗1 strictly higher than h in this case, which implies D∗ is not a

connected set.20 The higher value of h∗1 improves the allocation in the bailout region relative

to Figure 3. However, increasing h1 makes deviating to a lower bail-in more attractive to

the bank. At h∗1, the bank would choose h = 0 when it is in the bailout region if that choice

were permitted. To prevent this deviation, the regulator increases h∗0 above zero, which has

the side effect of distorting the allocation in states where the bank has a small or zero loss.

The optimal policy balances these two concerns: the benefit that increasing h∗1 brings when

the bank’s loss is large and the cost that increasing h∗0 imposes when the loss is smaller.

In some cases, the optimal regulatory policy also enhances financial stability. In panel

(c) of Figure 3, where there is no regulation, a run occurs when λ is in the bailout region.

The bank could prevent this run by setting its bail-in to h, but finds h = 0 more attractive.

Panel (c) of Figure 5 depicts the optimal policy for the same parameter values. The regulator

imposes a minimum bail-in h∗0 > 0, which makes choosing the lowest possible bail-in less

attractive. In response, the bank sets its bail-in to h > h∗0 and prevents the run. The

20A non-connected optimal delegation set has been shown to arise in other settings as well. See for example
Melumad and Shibano (1991) and Alonso and Matouschek (2008).
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optimal policy sets h∗0 just high enough to induce this switch and sets h∗1 = h. Focusing on

the limit as ε→ 0, therefore, the policy corresponds to simple a minimum bail-in of h∗0. The

optimal minimum value h∗0 distorts the allocation in states where the bank has a small or

zero loss, but this cost is more than offset by the gain from improving the allocation and

preventing a run in states where the bank is bailed out.

This example also illustrates assessing the observed effects of a minimum bail-in policy

can be tricky. In panel (c) of Figure 5, the minimum bail-in is binding only when the bank’s

loss is small. One might be tempted to conclude that the policy is ineffective: it is distorting

the allocation when the loss is small, but is not binding in states where the loss is larger.

This conclusion is incorrect, of course; absent the policy, the bank would choose h = 0 when

the loss is larger and a run would occur, as shown in panel (c) of Figure 3.

Summary. The different forms of the optimal policy in the panels of Figure 5 should not

obscure the common theme. Propositions 9 and 10 show that the optimal regulatory policy

induces the bank to set a larger initial bail-in in those states where it is bailed out. This

inducement can be direct, by imposing a minimum bail-in that is binding in those states,

or indirect. The indirect approach induces the bank to choose a bail-in larger than the

required minimum in these states by ensuring the threat of a run makes choosing any smaller

allowable bail-in unattractive. In other words, optimal regulation leverages the threat of a

run to discipline bank behavior. The optimal policy leads to larger initial bail-ins, which

make bailouts smaller and less frequent, resulting in strictly higher welfare.

6.3 Discussion

System-wide bail-ins. As discussed above, our model would be unchanged if there were

many banks, each of which received an idiosyncratic draw from the loss distribution F . In

that case, the regulator’s policy would be a system-wide bail-in based on a systemic trigger.

In other words, the regulator would receive aggregate signal indicating some banks have

experienced losses, but would not initially know how each bank is affected. The optimal

policy is to promptly require all banks to choose a bail-in from the same delegation set D∗.

Later, once policy makers are able to observe the loss in each bank, the bail-in ĥ of the

remaining investors and the bailout b would be tailored to bank-specific information.

Applications. Perhaps the most direct counterpart to our model in practice is a money

market mutual fund, which has a single type of creditor (the shareholders) and allows these

creditors to withdraw on a daily basis. Runs on certain types of money market funds in 2008

and again in 2020 have led to an ongoing policy debate over how to best reform or regulate

these funds. Ennis et al. (2023) review the issues involved and identify the expectation
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of government support – bailouts – as a fundamental source of instability in this industry.

Our model captures this concern and prescribes a course of action. Rather than relying on

funds to voluntarily bail in their investors, as in the previous round of reforms, regulators

should impose bail-in rules at the onset of periods of market stress. These rules should be

designed to increase the bail-in chosen in states where the fund is weak while minimizing

the distortion in states where it is sound. Our results in Propositions 9 and 10 show how to

optimally balance these concerns.

We believe these lessons also apply to other types of financial intermediaries, which

may have multiple types of creditors with different maturity and seniority of claims. The

key distortion in our model is that the intermediary – and its creditors/investors – have

an incentive to allow too many resources to flow out during the early stages of a crisis,

before policy makers have actionable information. These payouts can take a variety of

forms, including dividends and share repurchases in addition to repayment of maturing term

debt and withdrawals. Regulating against this behavior is challenging precisely because the

regulator does not yet know the extent of the problem. Nevertheless, our results indicate

that prompt regulatory action is desirable. This action should restrict the choices available

to intermediaries, while leaving them some discretion to tailor the bail-in to their situation.

Implementing the optimal policy. We have framed our analysis as a delegation problem,

where the choice of initial bail-in h is made by the bank within the limits set by the regulator.

There is an equivalent mechanism-design formulation in which the bank reports its private

information and the regulator assigns an action based on this report. This interpretation may

be more natural in some settings. In times of stress, where the bank may have experienced

a loss, the regulator asks the bank to report its loss λ. The regulator then assigns the bail-in

h that solves the problem in equation (17) based on the optimal delegation set D∗. The

resulting allocation rule h(λ) corresponds to the upper bound of the light-blue region in the

panels of Figure 5. As the panels show, this rule is a non-monotone function of the bank’s

loss with one or more discontinuities Nevertheless, the rule is incentive compatible by design

and the bank will report its loss truthfully.

Incentive to deposit. Requiring that banks bail-in their creditors in some states of nature

may decrease the incentive for these investors to deposit with intermediaries in the first

place. This effect does not appear in our model because investors save their entire (fixed)

endowment. In a broader setting where agents make a consumption-savings choice, for

example, a policy of mandatory bail-ins for banks may encourage agents to consume more

and save less. In other words, regulatory bail-ins may result in a smaller banking system.

In such cases, however, the smaller banking system would likely be socially desirable. When
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bailouts are larger than in the efficient plan, agents will have an incentive to save too much

and the banking system (including shadow banks) will tend to be larger than in the planner’s

allocation. Reducing the incentive to deposit in such arrangements would thus be another

dimension in which a mandatory bail-in policy could improve the allocation of resources.

7 Concluding remarks

Several policy reforms implemented in response to the financial crisis of 2008 aim to give

financial intermediaries the ability to more easily impose losses on their investors and/or

creditors without declaring bankruptcy or being placed in resolution. Examples include

allowing money market mutual funds to restrict withdrawals and impose withdrawal fees,

the introduction of swing pricing in the mutual fund industry more generally,21 and the

adoption of rules encouraging the issue of “bail-inable” bank debt. These reforms aim to

allow intermediaries to better handle periods of financial stress without the need for bailouts

or other forms of public support. While it remains to be seen how effective these reforms will

be across a range of situations, the indications to date are not encouraging. At the onset of

the Covid-19 crisis in the U.S. in March 2020, the Federal Reserve and U.S. Treasury moved

quickly to “assist money market funds in meeting demands for redemptions” by creating a

special facility to finance the purchase of assets from these funds.22 The new tools designed

for dealing with high redemption demand– restricting withdrawals or imposing withdrawal

fees – were not used by any fund. This episode serves as a clear warning that financial-

stability policies that rely on intermediaries choosing to quickly bail in their investors in

periods of financial stress may be ineffective.

Our model captures the incentive problems that can undermine the effectiveness of these

types of policies and points to a better approach. Banks and other intermediaries anticipate

that, when the situation is bad enough, the public sector will respond with bailouts. It does

not appear feasible for governments to commit to a strict no-bailout policy, and such a policy

may not even be desirable; in our environment, it is optimal for the public sector to absorb

some of the tail risk. The anticipation of being bailed out undermines the incentive for an

intermediary to quickly bail in its investors and creditors, making initial bail-ins inefficiently

small and bailouts inefficiently large. Moreover, these small initial bail-ins can be a source

of fragility, triggering a run by investors that leads to an even larger bailout.

21See Chen et al. (2010) for evidence of strategic complementarities in the withdrawal decisions of investors
in open-end mutual funds where the price is set daily according to the net asset value of the fund. Jin et al.
(2022) study the ability of swing pricing to remove these complementarities and prevent runs.

22Detailed information on the Money Market Mutual Fund Liquidity Facility is available at www.

federalreserve.gov/monetarypolicy/mmlf.htm.
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Our results show how a regulator can improve outcomes by promptly imposing a bail-in

policy with partial delegation. This policy may require the bank to set a minimum bail-in

but allow the bank to choose within some bounds. The optimal policy is designed so that

it increases the bail-in chosen by the bank in states where it will later be bailed out, even

though the regulator does not initially observe the state. In some cases, the optimal policy

takes advantage of the possibility of a run by investors to induce the bank to select an

appropriate bail-in.

This type of policy can be implemented across a range of intermediation arrangements.

In general terms, our results support restricting dividend payments and share repurchases by

banks in the early stages of a crisis. Banks could also be required to issue debt that is either

automatically written down or converted to equity based on a systemic trigger. Similarly,

a minimum withdrawal fee could be imposed at all money market mutual funds based on

measures of systemic stress that are available to policy makers in real time. One interesting

area for future research is adapting our model to the specific institutional features of different

intermediation arrangements and deriving the resulting prescriptions for bail-in policy for

each arrangement.
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Appendix: Proofs

Proposition 1. The efficient plan satisfies h∗ = ĥ∗ for all λ ∈ Λ.

Proof. To begin, note that the resource constraint (4) will hold with equality for all λ at

the solution to the planner’s problem. The non-negativity restrictions then imply that the

planner will set h = ĥ = b = 0 when λ = 0. When there is no loss, investors are neither

bailed in nor bailed out.

For λ > 0, let θ denote the multiplier on the resource constraint (4). We can then write

the first-order conditions for the optimal choice of h as23

u′ ((1− h)c∗1) ≥ θ and h [u′ ((1− h)c∗1)− θ] = 0 (19)

and for the optimal choice of ĥ as

u′
(
(1− ĥ)c∗2

)
≥ θ

R
and ĥ

[
u′
(
(1− ĥ)c∗2

)
− θ

R

]
= 0. (20)

We will show that the solutions to these two sets of equations are necessarily the same,

considering the cases of boundary and interior solutions separately.

First, suppose the solution has h = 0. Then equation (19) implies

u′ (c∗1) ≥ θ.

The reference allocation (c∗1, c
∗
2) is characterized by the standard optimality condition in the

Diamond-Dybvig framework,

u′ (c∗1) = Ru′ (c∗2) .

Combining these two equations yields

u′ (c∗2) ≥
θ

R

and, therefore, the unique ĥ (ϕ) satisfying the conditions in equation (20) is ĥ (ϕ) = 0.

Next, suppose the solution has h > 0. Then equation (19) implies

u′ ((1− h)c∗1) = θ.

23Note that the Inada conditions on the function u imply that the upper bounds on h (ϕ) and ĥ (ϕ) in equation
(3) will never bind at the solution to the problem.
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Given that the utility function u is of the constant-relative-risk-aversion form, the ratio of

marginal utilities depends only on the ratio of consumption levels, that is, we have

u′ (αc∗1)

u′ (αc∗2)
=
u′ (c∗1)

u′ (c∗2)
= R (21)

for any α > 0. These last two equations imply

u′ ((1− h)c∗2) =
θ

R

and, therefore, setting ĥ = h is the unique solution to equation (20). Combining these two

cases, we have shown that ĥ = h holds for all λ, which establishes the result.

Proposition 2. The efficient plan
(
h∗, ĥ∗, b∗

)
sets

h∗ = ĥ∗ =

{
λ

λ∗

}
and b∗ =

{
0

λ− λ∗

}
as λ

{
≤
>

}
λ∗.

Proof. Using the result from Proposition 1 and the simplified resource constraint in equation

(6), we can write the planner’s problem as choosing the bail-in h to maximize

πu
(
(1− h)c∗1

)
+ (1− π)u

(
(1− h)c∗2

)
− µ[λ− h],

where the non-negativity constraints for bail-ins and bailouts can be written as

0 ≤ h ≤ λ. (22)

The objective function is strictly concave in h and has slope

−
[
πu′
(
(1− h)c∗1

)
c∗1 + (1− π)u′

(
(1− h)c∗2

)
c∗2
]
+ µ

or

−u′
(
(1− h)c∗1

) [
πc∗1 + (1− π)

u′
(
(1− h)c∗2

)
u′
(
(1− h)c∗1

)c∗2
]
+ µ.

Using equation (21) and the resource constraint for the reference allocation in equation (3),

it is straightforward to show the term in square brackets reduces to 1. Using equation (7)

to replace µ, we can then write the slope as
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−u′
(
(1− h)c∗1

)
+ u′

(
(1− λ∗)c∗1

)
.

If λ ≤ λ∗, this slope is non-negative when evaluated at the upper bound for h in equation

(22) and, therefore, the solution is h = λ. If λ > λ∗, the constraints in equation (22) do not

bind and the solution is h∗ = λ∗. In both cases, the planner’s optimal bailout is determined

by setting h = h∗ in equation (6) and solving for b∗.

Proposition 3. Given h and y, the bail-in of remaining investors ĥ and bailout b satisfy:

(i) if ĥNB (h, y) ≤ λ∗, then ĥ (h, y) = ĥNB (h, y) and b (h, y) = 0

(ii) if ĥNB (h, y) > λ∗, then ĥ(h, y) = λ∗ and and the bailout satisfies equation (13).

Proof. As a first step, we use equation (10) to write the bank’s marginal value of resources

after π withdrawals as

V1
(
ψ(h, b), y

)
≡

{
u′
(
Rψ(h, b)

)
R

πu′
(
ψ(h, b)c∗1

)
c∗1 + (1− π)u′

(
ψ(h, b)c∗2

)
c∗2

}
as

{
y = 2

y = 1

}
. (23)

This expression together with the definition of ψ in equation (8) shows that V1 is strictly

decreasing in b for both values of y. In what follows, we use the expression to establish the

two parts of the proposition in turn.

Part (i): First suppose y = 2. Then ĥNB(h, 2) ≤ λ∗ implies

(
1− ĥNB(h, 2)

)
c∗2 ≥ (1− λ∗) c∗2.

Using equations (8) and (12), we can rewrite the left-hand side of the inequality in terms of

the bank’s remaining resources ψ,

Rψ(h, 0) ≥ (1− λ∗) c∗2,

which implies

u′
(
Rψ(h, 0)

)
R ≤ u′

(
(1− λ∗) c∗2

)
R.

Using equation (21), we can rewrite the right-hand side of this inequality as

u′
(
(1− λ∗) c∗2

)
R = u′

(
(1− λ∗) c∗1

)
= µ.

Combining these last two equations with equation (23) yields

V1
(
ψ(h, 0), 2

)
≤ µ,
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which implies b∗ = 0 is the unique solution to the first-order condition in equation (11).

Now suppose y = 1. In this case, we use ĥNB(h, 1) ≤ λ∗ to write both

(
1− ĥNB(h, 1)

)
c∗1 ≥ (1− λ∗) c∗1 and

(
1− ĥNB(h, 1)

)
c∗2 ≥ (1− λ∗) c∗2.

Using equations (8) and (12), we can write the left-hand side of these inequalities in terms

of the bank’s remaining resources ψ,

ψ(h, 0)c∗1 ≥ (1− λ∗) c∗1 and ψ(h, 0)c∗2 ≥ (1− λ∗) c∗2.

The first of these two inequalities implies

u′
(
ψ(h, 0)c∗1

)
c∗1 ≤ u′

(
(1− λ∗) c∗1

)
c∗1 = µc∗1, (24)

while the second implies

u′
(
ψ(h, 0)c∗2

)
c∗2 ≤ u′

(
(1− λ∗) c∗2

)
c∗2 (25)

= u′
(
(1− λ∗) c∗1

)c∗2
R

= µ
c∗2
R

where the first equality on the second line uses equation (21). Combining equations (24) and

(25) yields

πu′
(
ψ(h, 0)c∗1

)
c∗1 + (1− π)u′

(
ψ(h, 0)c∗2

)
c∗2 ≤ µ

(
πc∗1 + (1− π)

c∗2
R

)
= µ,

where the last equality uses the resource constraint in equation (3). Combining this inequality

with equation (23) yields

V1
(
ψ(h, 0), 1

)
≤ µ,

which implies b∗ = 0 is the unique solution to the first-order condition in equation (11) when

y = 1 as well. When b∗ = 0, the remaining investors will be bailed in at rate ĥNB as defined

in equation (12).

Part (ii): When ĥNB(h, 1) > λ∗, the steps above show that V1(ψ(h, b = 0), y) > µ and,

therefore, the solution to the fiscal authority’s bailout choice problem is interior. In this

case, the first-order condition in equation (11) holds with equality,

V1
(
ψ(h, b), y

)
= µ = u′

(
(1− λ∗) c∗1

)
.
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If y = 2, this equation can be written as

u′
(
Rψ(h, b)

)
R = u′

(
(1− λ∗) c∗1

)
= u′

(
(1− λ∗) c∗2

)
R,

where the last equality uses equation (21). Using the monotonicity of u′, we have

Rψ(h, b) = (1− λ∗) c∗2.

Using the definition of ψ in equation (8), we can rewrite this equation as

R
1− λ− π(1− h)c∗1 + b

1− π
= (1− λ∗) c∗2.

Solving for b yields

b = (1− π)(1− λ∗)
c∗2
R

− (1− π)

(
1− λ− π(1− h)c∗1

1− π

)
= (1− π)

c∗2
R

(
1− λ∗ − R

c∗2

1− λ− π(1− h)c∗1
1− π

)
.

Finally, using equations (3) and (12), we can rewrite this equation as

b = (1− πc∗1)
(
ĥNB(h, 2)− λ∗

)
,

as desired.

The steps for y = 1 are similar. Equation 7 can be written as

πu′
(
ψ(h, b)c∗1

)
c∗1 + (1− π)u′

(
ψ(h, b)c∗2

)
c∗2 = u′

(
(1− λ∗) c∗1

)
.

Using equation (21), we can write this equation as

u′
(
ψ(h, b)c∗1

)(
πc∗1 + (1− π)

c∗2
R

)
= u′

(
(1− λ∗) c∗1

)
.

Using equation (3) and the monotonicity of u′, this equation implies

ψ(h, b) = 1− λ∗,

or, replacing ψ using equation (8),

1− λ− π(1− h)c∗1 + b

1− π
= 1− λ∗.
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Solving for b yields

b = (1− π)

(
1− λ∗ − 1− λ− π(1− h)c∗1

1− π

)
= (1− π)

(
ĥNB(h, 1)− λ∗

)
,

as desired.

Proposition 4. The function y(h) in equation (14) is weakly increasing. The composite

function b (h, y(h)) defined by equations (13) and (14) is decreasing in h and is strictly

decreasing whenever b(h, y(h)) > 0.

Proof. For the first part of the proposition, equation (12) shows that ĥNB(h, 2) is strictly

decreasing in h. The right-hand side of the inequality in equation (14) is, therefore, weakly

increasing in h, while the left-hand side is strictly decreasing. Moreover, λ∗ < 1 implies

y(h) = 2 will always hold for h sufficiently close to 1. If follows that either (i) y(h) = 2 for

all h ∈ [0, 1] or (ii) y(h) = 1 for h < x and y(h) = 2 for h ≥ x for some x ∈ (0, 1); in both

cases, y(h) is weakly increasing. Intuitively, a larger bail-in always decreases the incentive

for patient investors to run.

For the second part of the proposition, we first show b(h, y) is decreasing in h holding

y fixed. For either value of y, equation (12) shows ĥNB(h, y) is strictly decreasing in h.

Equation (13) then shows that for any h′ > h, we have b(h′, y) ≤ b(h, y) for any y, with

strict inequality if b(h, y) > 0. Intuitively, if the bank paid less to the investors who have

already withdrawn, it receives a smaller bailout.

We next show b(h, y) is decreasing in y. Using c∗2 < R in equation (12) shows that

ĥNB(h, y) decreases as we move from y = 1 to y = 2 for any h. Using this fact in equation

(13), together with c∗1 > 1, implies we have b(h, 2) ≤ b(h, 1) for any h. Intuitively, the bank

receives a smaller bailout if there is no run.

Combining these two results with the first part of the proposition shows that for any

h′ > h, we have

b (h, y(h)) ≥ b (h′, y(h)) ≥ b (h′, y(h′)) ,

where the first inequality is strict if b (h, y(h)) > 0. Intuitively, a higher bail-in h leaves the

bank with more resources and may, in addition, prevent a run. Both of these effects decrease

the bailout payment it receives.
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Proposition 5. There exists λe1 < λ∗ such that, when µ ≤ µ1, the bank is bailed out if and

only if λ > λe1. In this region, the bank sets he = 0, patient investors do not run (ye = 2),

and the equilibrium bailout payment is

be = λ− λ∗ + λ∗πc∗1 > b∗.

Proof. In states where the bank is bailed out, it will set its initial bail-in h either to zero or

to the lowest value that prevents a run, h. The cutoff µ1 is defined so that µ ≤ µ1 implies

h = 0; it follows immediately that the bank will set he = 0 in these states and that patient

investors do not run (ye = 2). ix or

be = (1− πc∗1)(1− λ∗)− (1− πc∗1)
R

(1− π)c∗2
(1− λ− πc∗1).

Using the resource constraint in equation (3) and regrouping terms yields

be = (1− λ∗)− (1− λ∗)πc∗1 − (1− λ− πc∗1)

or

be = λ− λ∗ + λ∗πc∗1,

as stated in the proposition. The planner’s bailout b∗ is shown in Proposition 2 to equal

λ−λ∗. Since λ∗, π, and c∗1 are all strictly positive, the decentralized bailout is strictly larger

than b∗.

What remains is to be shown that (i) there exists a cutoff λe1 such that the bank is bailed

out if and only if λ > λe1 and (ii) this cutoff is below the efficient level λ∗. In states where

the bank is not bailed out, it will set h = ĥ = λ. The bank will choose h = 0, and hence be

bailed out, if and only if doing so yields higher expected utility, that is,24

π u (c∗1)︸ ︷︷ ︸
h=0

+(1− π)u ((1− λ∗)c∗2)︸ ︷︷ ︸
bailed out

> π u ((1− λ)c∗1)︸ ︷︷ ︸
h=λ

+(1− π)u ((1− λ)c∗2)︸ ︷︷ ︸
not bailed out

Using the form of the utility function in equation (1), we can factor out the (1− λ) term on

the right-hand side,

π u (c∗1) + (1− π)u
(
(1− λ∗)c∗2

)
> (1− λ)1−γ

(
πu (c∗1) + (1− π)u (c∗2)

)
24The inequality is strict because we assume the bank chooses the larger bail-in if it is exactly indifferent.
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and solve for

λ > 1−
(
π u (c∗1) + (1− π)u ((1− λ∗)c∗2)

πu (c∗1) + (1− π)u (c∗2)

) 1
1−γ

≡ λe1.

To compare λe1 with λ∗, we use the explicit solution to the planner’s problem,

c∗1 =
1

π + (1− π)R
1−γ
γ

and c∗2 =
R

1
γ

π + (1− π)R
1−γ
γ

(26)

to obtain

λe1 = 1−

(
π + (1− π)(1− λ∗)1−γR

1−γ
γ

π + (1− π)R
1−γ
γ

) 1
1−γ

Our assumption in equation (7) implies λ∗ > 0 and, therefore,

λe1 < 1−

(
π(1− λ∗)1−γ + (1− π)(1− λ∗)1−γR

1−γ
γ

π + (1− π)R
1−γ
γ

) 1
1−γ

= 1−
(
(1− λ∗)1−γ

) 1
1−γ = λ∗,

as desired.

Proposition 6. There exist µ2 > µ1 and λe2 < λ∗ such that, when µ1 < µ < µ2, the bank

is bailed out if and only if λ > λe2. In this case, the bank sets he = h > 0, patient investors

do not run (ye = 2), and the equilibrium bailout payment is

be = λ− λ∗ + (λ∗ − h) πc∗1 > b∗.

Proof. When µ > µ1, h is strictly positive. In states where it is bailed out, the bank must

choose between setting h = h to prevent a run and setting h = 0 and provoking a run. If

will choose h = h if

π u
(
(1− h)c∗1

)︸ ︷︷ ︸
h=h

+ (1− π)u
(
(1− λ∗)c∗2

)︸ ︷︷ ︸
all patient

≥ π u (c∗1)︸ ︷︷ ︸
h=0

+(1− π)
(
πu
(
(1− λ∗)c∗1

)
+ (1− π)u

(
(1− λ∗)c∗2

))︸ ︷︷ ︸
mix of impatient and patient

(27)
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The definition of h in equation (16) implies

(1− h)c∗1 = (1− λ∗)c∗2, (28)

so we can write the previous inequality as

u
(
(1− λ∗)c∗2

)
≥ πu (c∗1) + (1− π)

(
πu
(
(1− λ∗)c∗1

)
+ (1− π)u

(
(1− λ∗)c∗2

))
Using the form of the utility function in equation (1), we have

(1− λ∗)1−γu(c∗2) ≥ πu (c∗1) + (1− π)(1− λ∗)1−γ
(
πu(c∗1) + (1− π)u(c∗2)

)
or, bearing in mind that γ > 1 and u(·) < 0,

(1− λ∗)1−γ ≤ u(c∗1)

(2− π)u(c∗2)− (1− π)u(c∗1)
.

Again using γ > 1, this expression can be written as

1− λ∗ ≥
(

u(c∗1)

(2− π)u(c∗2)− (1− π)u(c∗1)

) 1
1−γ

Next, we use equation (7) to replace λ∗ on the left-hand side and equation (26) to replace

c∗1 and c∗2 on the right-hand side, we have

1

µ
1
γ c∗1

≥

(
1

(2− π)R
1−γ
γ − (1− π)

) 1
1−γ

or

µ
1
γ c∗1 ≤

(
(2− π)R

1−γ
γ − (1− π)

) 1
1−γ

or

µ ≤ R (c∗1)
−γ
(
(2− π)− (1− π)R

γ−1
γ

) γ
1−γ︸ ︷︷ ︸

>1

≡ µ2.

Given µ1 = (c∗1)
−γ, the expression above shows µ2 > µ1 holds.

The argument above establishes that when µ ∈ (µ1, µ2], the bank will set h = h > 0 and

patient investors will not run (ye = 2) in states where the is bailed out. Substituting these
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values into the expression for b(h, y) in equation (13) yields

be = (1− πc∗1)

(
1− R

c∗2

1− λ− π(1− h)c∗1
1− π

− λ∗
)
.

We can rewrite this expression as

be = (1− πc∗1)(1− λ∗)− (1− πc∗1)
R

(1− π)c∗2
(1− λ− π(1− h)c∗1),

or, using the resource constraint in equation (3) and regrouping terms,

be = (1− λ∗)− (1− λ∗)πc∗1 − (1− λ) + π(1− h)c∗1),

which simplifies to

be = λ− λ∗ + (λ∗ − h)πc∗1.

Using b∗ = λ− λ∗ and h < λ∗, we have be > b∗.

What remains is to show that (i) there exists a cutoff λe2 such that the bank is bailed out

if and only if λ > λe2 and (ii) this cutoff is below the efficient level λ∗. The bank will choose

h = h, and hence be bailed out, rather than setting h = ĥ = λ if and only if

π u ((1− h)c∗1)︸ ︷︷ ︸
h=h

+(1− π)u ((1− λ∗)c∗2)︸ ︷︷ ︸
bailed out

> π u ((1− λ)c∗1)︸ ︷︷ ︸
h=λ

+(1− π)u ((1− λ)c∗2)︸ ︷︷ ︸
not bailed out

Using equation (28) and the form of the utility function in equation (1), we can write this

inequality as

(1− λ∗)1−γu (c∗2) > (1− λ)1−γ
(
πu (c∗1) + (1− π)u (c∗2)

)
or, bearing in mind that γ > 1 and u(·) < 0,

1− λ < (1− λ∗)

(
π
u(c∗1)

u(c∗2)
+ (1− π)

) 1
γ−1

or

λ > 1− (1− λ∗)

(
π
u(c∗1)

u(c∗2)
+ (1− π)

) 1
γ−1

︸ ︷︷ ︸
<1

≡ λe2.

Note that λe2 < 1− (1− λ∗) = λ∗ is immediate from the expression above.
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Proposition 7. There exists λe3 < λ∗ such that, when µ > µ2, the bank is bailed out if and

only if λ > λe3. In this case, the bank sets he = 0, patient investors run (ye = 1), and the

equilibrium bailout payment is

be = λ− λ∗ + λ∗πc∗1 + (1− λ∗)π(c∗1 − 1).

Proof. When µ > µ2, the proof of Proposition 6 shows that, in states where the bank is

bailed out, the inequality in equation (27) is reversed, so the bank will set he = 0 and

patient investors will run (ye = 2). Substituting these values into the expression for b(h, y)

in equation (13) yields

be = (1− π)

(
1− 1− λ− πc∗1

1− π
− λ∗

)

= λ− λ∗ + π
(
c∗1 − (1− λ∗)

)
= λ− λ∗ + λ∗πc∗1 + (1− λ∗)π(c∗1 − 1)︸ ︷︷ ︸

extra due to run

.

This expression makes clear that be is strictly greater than b∗ = λ− λ∗.

What remains is to be shown that (i) there exists a cutoff λe3 such that the bank is bailed

out if and only if λ > λe1 and (ii) this cutoff is below the efficient level λ∗. The bank will set

h = 0 and be bailed out rather than choosing h = λ if and only if

π u(c∗1)︸ ︷︷ ︸
h=0

+ (1− π)
(
πu
(
(1− λ∗)c∗1

)
+ (1− π)u

(
(1− λ∗)c∗2

))︸ ︷︷ ︸
mix of impatient and patient; bailed out

> π u ((1− λ)c∗1)︸ ︷︷ ︸
h=λ

+ (1− π) u ((1− λ)c∗2)︸ ︷︷ ︸
all patient; no bailout

Using the form of the utility function in equation (1), we can write this inequality as

πu(c∗1) + (1− λ∗)1−γ(1− π)
(
πu(c∗1) + (1− π)u(c∗2)

)
> (1− λ)1−γ

(
πu(c∗1) + (1− π)u(c∗2)

)
or

(1− λ)1−γ >
πu(c∗1) + (1− λ∗)1−γ(1− π)

(
πu(c∗1) + (1− π)u(c∗2)

)
πu(c∗1) + (1− π)u(c∗2)
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or, since γ > 1,

(1− λ) <

(
πu(c∗1) + (1− π)u(c∗2)

πu(c∗1) + (1− λ∗)1−γ(1− π)
(
πu(c∗1) + (1− π)u(c∗2)

)) 1
γ−1

or

λ > 1−

(
πu(c∗1) + (1− π)u(c∗2)

πu(c∗1) + (1− λ∗)1−γ(1− π)
(
πu(c∗1) + (1− π)u(c∗2)

)) 1
γ−1

≡ λe3.

To compare λe3 with the efficient bailout cutoff λ∗, we use the fact that µ > µ2 implies the

inequality in equation (27) is reversed, which implies

λe3 < 1−

(
πu(c∗1) + (1− π)u(c∗2)

πu
(
(1− h)c∗1

)
+ (1− π)u

(
(1− λ∗)c∗2

)) 1
γ−1

.

Using equation (28) to replace h, we have

λe3 < 1−
(
πu(c∗1) + (1− π)u(c∗2)

(1− λ∗)1−γu(c∗2)

) 1
γ−1

.

= 1−
(
π

u(c∗1)

u(c∗2) + (1− π)

) 1
γ−1

(1− λ∗)

< 1− (1− λ∗) = λ∗.

We have, therefore, established that the decentralized bailout cutoff λe3 is below the efficient

cutoff λ∗, as desired.

Proposition 8. For any closed delegation set D, (i) a solution to the bank’s maximization

problem (17) exists for every λ ∈ Λ, and (ii) there exists λeD ∈ Λ such that the bank is bailed

out in this solution if any only if λ > λeD.

Proof. Part (i): For any fixed λ ∈ Λ, the function WB(h;λ) defined in equation (15) is

continuous in h except at points where y(h) changes value. Proposition 4 shows that y(h)

changes value at most once as h increases from 0 to 1: if y(0) = 1, the value changes to

y(h) = 2 when h reaches the point where withdrawing early is no longer a strictly dominant

strategy. As a result, WB is an upper semi-continuous function of h on the unit interval and,

therefore, attains a maximum on any compact subset D.
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Part (ii): Suppose the bank is not bailed out under its optimal choice heD(λ) for some λ. We

will show that the bank is also not bailed out under its optimal choice for any λ′ < λ. It

then follows that the set of ϕ for which the bank is not bailed out is an interval of the form

[0, λeD] for some λeD ∈ Λ.

Equations (12) and (14) shows that when λ decreases, the set of h that lead to a bailout

becomes weakly smaller. If there is no choice h ∈ D that leads to a bailout for realization

λ, therefore, the same is true for any λ′ < λ and the result is established. If there are some

h ∈ D that lead to a bailout in state λ, let ĥ(λ) denote the best such choice. Since heD is an

optimal choice, we clearly have

WB(h
e
D(λ);λ) ≥ WB(ĥ(λ);λ).

Now consider any λ′ < λ. It is straightforward to show that WB(h;λ) is non-increasing in λ

(holding h fixed) so we have

WB(h
e
D(λ

′);λ′) ≥ WB(h
e
D(λ);λ

′) ≥ WB(h
e
D(λ);λ).

What remains to be shown is that heD(λ
′) does not lead to a bailout. Let ĥ(λ′) denote the best

choice that does lead to a bailout.25 Because the set of h that lead to a bailout is increasing

in λ, ĥ(λ′) would have also led to a bailout under the original realization. Moreover, when

the bank is bailed out, its payoff is independent of λ, so we have

WB(ĥ(λ
′);λ′) = WB(ĥ(λ

′);λ) ≤ WB(ĥ(λ);λ).

Combining the above inequalities shows WB(h
e
D(λ

′);λ′) ≥ WB(ĥ(λ
′);λ′), meaning the bank

is not bailed out under its optimal choice for λ′ and we have established the result.

Proposition 9. If µ ≤ µ1, then D
∗ = [h∗1, 1] with h

∗
1 > 0.

Proof. The proof is divided into two steps. We first show the optimal delegation set must

be an interval of the form [h1, 1] for some h1 ≥ 0. We then show this lower bound is strictly

positive.

Step (i): Show D∗ = [h1, 1] for some h1 ≥ 0.

Given any compact delegation set D, define a new set D̂ ≡ [h1, 1] where h1 is the

smallest element of D. To establish this step, we show that D̂ weakly dominates D, that is,

25If no such choice exists for realization λ′, the bank is clearly not bailed out and the result is established.
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W(D̂) ≥ W(D). It then follows that the largest optimal delegation set D∗ must also have

the form.

Because D̂ contains D, the bank’s optimized payoff must be at least as high,

WB

(
he
D̂
(λ);λ

)
≥ WB (heD(λ);λ) for all λ ∈ Λ. (29)

The regulator’s payoff equals WB plus the cost of any bailout payment. To establish that

the regulator’s payoff is also at least as high, we will show that the bailout associated with

he
D̂
(λ) is no larger than the bailout associated with heD(λ) for all λ.

Consider first any λ such that heD(λ) = h1. In these cases, the bank’s choice of h cannot

decrease when we move to policy D̂. Using the second part of Proposition 4, therefore, the

bailout payment cannot increase, that is

b
(
he
D̂
(λ), 2

)
≤ b (heD(λ), 2) for any λ such that heD(λ) = h1. (30)

Next consider any λ such that heD(λ) > h1. In these states, the bank is not bailed out

under policy D. While the bank’s optimal choice of bail-in h may decrease when we move

to policy D̂, the bailout must remain zero. To see why, suppose this were not true, that is,

suppose the bank were bailed out following he
D̂
(λ). Because µ ≤ µ1, we know h as defined in

equation (16) is zero and no choice of bail-in will lead to a run. If the bank is being bailed

out, therefore, it must be choosing the smallest element of D̂, that is, he
D̂
(λ) = h1. But h1

was a feasible choice under policy D as well, which contradicts the fact that heD(λ) > h1 was

chosen.26 We thus have

b
(
he
D̂
(λ), 2

)
= b (heD(λ), 2) = 0 for any λ such that heD(λ) > h1. (31)

Combining equations (29) – (31) yields

WR

(
he
D̂
(λ);λ

)
≥ WR (heD(λ);λ) for all λ ∈ Λ. (32)

Using the definition of W in equation (18), we then have W(D̂) ≥ W(D), as desired.

Step (ii): Show h∗1 > 0.

Because the optimal delegation set has the form [hmin, 1], we can write the regulator’s

26Recall that, if the bank were indifferent between h = h1 and h = he
D(λ) > h1, it would have chosen the

larger bail-in under our tie-breaking rule.
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expected payoff as∫ h1

0

WR (h1;λ) dF (λ) +

∫ λe
D

h1

WR (λ;λ) dF (λ) +

∫ λ̄

λe
D

WR (h1;λ) dF (λ).

If the bank has a zero or small loss, it chooses the smallest allowable bail-in, h1. When the

loss is between h1 and the bailout cutoff λeD, the bank sets h = λ and is not bailed out. When

the loss is larger than λeD, the bank chooses the smallest allowable bail-in and is bailed out.

The bailout cutoff also depends on h1 and can be shown in this case to be

λeD (h1) = 1−
(
πu ((1− h1)c

∗
1) + (1− π)u (ϕ∗c∗2)

πu (c∗1) + (1− π)u (c∗2)

) 1
1−γ

. (33)

It is straightforward to show this cutoff is increasing in h1. When the minimum bail-in is

larger, being bailed out is less attractive to the bank and the set of states in which a bailout

occurs shrinks.

Because the distribution F may put positive probability on λ = 0, it is useful to rewrite

the regulator’s payoff using the density function f . Letting z ≥ 0 denote the probability of

λ = 0, we have

z WR (h1; 0) +

∫ h1

0

WR (h1;λ) f(λ)dλ+

∫ λe
D

h1

WR (λ;λ) f(λ)dλ (34)

+

∫ λ̄

λe
D

WR (h1;λ) f(λ)dλ.

Investors never have an incentive to run when µ < µ1, meaning y(h) = 2 holds for all h. In

this case, the function WR(h;λ) is continuous in h and is differentiable for all λ except the

bailout cutoff λeD. We can, therefore, write the slope of the regulator’s expected payoff in

equation (34) with respect to h1 as

z
dWR

dh
(h1; 0) +

∫ h1

0

dWR

dh
(h1;λ) f(λ)dλ (35)

+
[
WR (λeD;λ

e
d)−WR (h1, λ

e
D)
]
f(λeD)

dλeD
dh1

+

∫ λ̄

λe
D

dWR

dh
(h1;λ) f(λ)dλ.

The first two terms in this expression capture the cost of raising h1: it increases the distortion

in states where the bank has no loss or only a small loss. The last two terms capture the

benefit of increasing h1: it shrinks the set of states where the bank is bailed out and increases

the bail-in the bank must use in those states. To evaluate this slope at h1 = 0, we write out
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the first term as

dWR

dh
(h1; 0) = πc∗1

(
−u′ ((1− h1)c

∗
1) +Ru′

(
R

1− π
(1− π(1− h1)c

∗
1)

))
.

Evaluating this term at h1 = 0 yields

dWR

dh
(0; 0) = πc∗1

(
−u′ (c∗1) +Ru′ (c∗2)

)
= 0. (36)

In other words, as h1 increases from zero, the cost of the distortion when the bank has no

loss is second-order because the bank was at an unconstrained optimum. The second term

in equation (35) also vanishes when h1 = 0. The third and fourth terms, in contrast, remain

strictly positive. It follows that the regulator’s objective function is strictly increasing at

h1 = 0 and, therefore, the optimal choice h∗1 is strictly positive.

Proposition 10. If µ > µ1 then D∗ = [h0, h− ε] ∪ [h1, 1] with 0 ≤ h∗0 ≤ h ≤ h∗1 < 1.

Moreover, at least one of h∗0 > 0 and h∗1 > h holds with strict inequality.

Proof. We follow a similar approach to that in the proof of Proposition 9. Given any dele-

gation set D, we first define another set D̂ that contains D and is the union of two intervals,

as in the statement of the proposition. We show that D̂ generates a payoff at least as high

as D and, therefore, the optimal delegation set must have this form. We then establish that

at least one of the inequalities in the proposition is strict.

Step 1: Define the new set D̂.

Given any D, let h1 denote its smallest element satisfying h1 ≥ h. In other words, h1 is the

smallest bail-in the bank can choose when it is in the bailout region without causing a run.

Because µ > µ1, we have h > 0 and, hence, h1 is strictly positive as well. Let h0 denote the

smallest overall element of D. Define

D̂ = [h0, h) ∪ [h1, 1] . (37)

Note that D̂ contains the original delegation set D by construction. It consists of two disjoint

intervals. All h in the lower interval would cause a run if chosen when the bank is in the

bailout region, while all h in the upper interval would prevent a run. In states where the

bank is bailed out, it will choose the smallest element of one of these two intervals, that is,

either h0 or h1.

Step 2: Show W(D̂) ≥ W (D).
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Consider first an intermediate delegation set,

D′ = D ∪ [h1, 1] .

That is, suppose we add to D only those bail-in choices that lie above h1. The argument

that moving from D to D′ cannot decrease the regulator’s payoff follows Step 1 in the proof

of Proposition 9 closely. Since D′ contains D, the bank’s optimized payoff must be as least

as high

WB (heD′(λ);λ) ≥ WB (heD(λ);λ) for all λ ∈ Λ. (38)

In all states λ > λeD, the bank is bailed out and sets heD(λ) to either h0 or h1. Since the

additions in moving to D′ are all larger than both h0 and h1, Proposition 4 shows that the

bailout received by the bank in these states cannot increase,

b
(
heD′(λ), y (heD′(λ))

)
≤ b
(
heD(λ), y (h

e
D(λ))

)
for all λ < λeD. (39)

For λ ≤ λeD, the bank’s choice of h may either increase or decrease when we move to D′.

However, since the bank is not bailed out under policy D, it must also not be bailed out

under its optimal choice from D′. To see why, suppose it were bailed out under D′. Then

heD′(λ) must equal either h0 or h1. But both of these options were available under D as well,

contradicting the fact that the bank did not choose them and receive a bailout under policy

D. We therefore have

b
(
heD′(λ), y (heD′(λ))

)
= b
(
heD(λ), y (h

e
D(λ))

)
= 0 for all λ ≤ λeD. (40)

Combining equations (38) – (40) with the definition of W in equation (18) shows that we

have W (D′) ≥ W(D), that is, moving to delegation set D′ weakly increases the regulator’s

payoff.

Next, we show that moving from D′ to D̂ in equation (37) also weakly increases the

regulator’s payoff. Note that D̂ contains D′ by construction, so we have the usual result that

the bank’s optimized payoff cannot decrease

WB

(
he
D̂
(λ);λ

)
≥ WB (heD′(λ);λ) for all λ ∈ Λ. (41)

All that remains is to show that the bailout payment to the bank does not increase for any

λ. Moving from D′ to D̂ adds choices of h that will cause a run if chosen when the bank is

in the bailout region. For λ > λeD′ , any h ∈ (h0, h) is strictly inferior to choosing h0. If the

bank is going to suffer a run, it would prefer to set the smallest bail-in possible. Since h0
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was also available under D′ and was not chosen, it must not be optimal under D̂ either and

the bank’s optimal choice remains unchanged,

he
D̂
(λ) = heD′(λ) for all λ > λeD′ . (42)

When λ ≤ λeD′ , the bank is not bailed out under D′. In this case, the bank must not be

bailed out following its optimal choice under D̂ either. To see why, suppose it were bailed

out under D̂. Then its optimal choice he
D̂
must be either h0 or h1. But both of these options

were available under policy D′, contradicting the fact that λ ≤ λeD′ . Therefore, we have

b
(
he
D̂
(λ), y

(
he
D̂
(λ)
))

= b
(
heD′(λ), y (heD′(λ))

)
= 0 for all λ ≥ λeD′ . (43)

Equations (41) - (43) imply we have

W(D̂) ≥ W (D′) ≥ W(D),

as desired. Together, steps (i) and (ii) show that the optimal delegation set must have the

form in equation (37). As discussed in the main text, we restrict the regulator to choose a

closed set to ensure the bank’s optimization problem has a solution in all states. If h1 > h,

the bank may want to choose the bail-in h closest to h in some states where it is not bailed

out, but no such closest number exists in D̂. To avoid this technical complication, we

approximate the form in equation (37) by

D∗
ε = [h0, h− ε] ∪ [h, 1] ,

and state our results in terms of the limiting case where ε approaches zero.

Step 3: Show at least one of h∗0 > 0 and h∗1 > h holds with strict inequality.

We establish the final step be contradiction. Suppose both h∗0 = 0 and h∗1 = h held.

Then, taking the limiting case where ε→ 0, D∗ would be all of the unit interval, as studied

in Section 5. We will show that increasing one or both of these lower bounds would raise

welfare, contradicting the claim that D∗ = [0, 1] is optimal. We break the analysis into cases

based on the public sector’s marginal cost of funds.

Case (i): µ1 < µ < µ2

In this case, Proposition 6 establishes that he(λ) = h > 0 for all λ > λe when D = [0, 1].

In other words, in states where the bank is bailed out, it will choose the smallest bail-in that

prevents a run. Moreover, µ < µ2 implies this preference is strict, meaning the regulator
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can increase h1 slightly above h and the bank will still prefer choosing h1 over setting h = 0

and experiencing a run in those states where it is bailed out. Within this neighborhood, and

keeping h∗0 fixed at zero, we can write the regulator’s expected payoff as a function of h1 ≥ h

as ∫ h−ε

0

WR (λ;λ) dF (λ) +

∫ λ̂

h−ε

WR (h− ε;λ) dF (λ) +

∫ h1

λ̂

WR (h1;λ) dF (λ) (44)

+

∫ λe
D

h1

WR (λ;λ) dF (λ) +

∫ λ̄

λe
D

WR (h1;λ) dF (λ)

where λ̂ is the state where the bank is indifferent between h1 and h − ε, assuming it is not

bailed out in either case,

WB

(
h1; λ̂

)
= WB

(
h− ε; λ̂

)
, (45)

and λeD depends on h1 as shown in equation (33) above. The first four terms in equation

(44) correspond to states where the bank is not bailed out. When λ is less than h − ε, the

bank chooses the efficient bail-in h = λ. For λ between h − ε and h1, the efficient bail-in

lies in the “hole” of the delegation set and the bank must either bail-in less (h− ε) or more

(h1). Equation (45) defines the cutoff below which the bank prefers h− ε and above which

it prefers h1. Finally, when λ is larger than λeD, the bank chooses h1 and is bailed out.

Differentiating the objective function with respect to h1 yields∫ h1

λ̂

dWR

dh
(h1;λ) dF (λ) +

[
WR (λeD;λ

e
d)−WR (h1, λ

e
D)
]
f(λeD)

dλeD
dh1

(46)

+

∫ λ̄

λe
D

dWR

dh
(h1;λ) dF (λ).

The first term in equation (46) captures the cost of distorting the bail-in in those states

where the bank is not bailed out, the efficient bail-in lies in the “hole” of the delegation set,

and the bank ends up choosing h1. This term is negative for all h1 > h. The second term

captures the change in the set of states where the bank is bailed out. The term in square

brackets is positive when h1 is close to h. Since λeD is increasing in h1, this second term is

strictly positive. The third term captures the effect of increasing the bail-in above h in states

where the bank is bailed out. This term is also strictly positive when h1 is close to h. Note

that no dλ̂/dh1 term appears in the derivative because the payoff function is continuous at

λ̂.

Evaluating this derivative at h1 = h and taking the limit as ε → 0, we have λ̂ → h
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and the first term in equation (46) becomes zero. Since the other two terms remain strictly

positive, the derivative is strictly positive at h1 = h. If h∗0 = 0, therefore, the optimal value

of h∗1 must be strictly positive.

Case (ii): µ > µ2

In this case, Proposition 7 establishes he(λ) = 0 for all λ > λe when D = [0, 1]. In

other words, in states where the bank is bailed out, it chooses no bail-in and investors run

on the bank. Moreover, µ > µ2 implies this preference is strict, meaning the the regulator

can increase h0 slightly above 0 and the bank will still choose the lowest possible bail-in

and experience a run in those states where it is bailed out. Within this neighborhood, and

keeping h∗1 fixed at h, we can write the regulator’s expected payoff as a function of h0 ≥ 0 as

z WR (h0; 0) +

∫ h0

0

WR (h0;λ) f(λ)dλ+

∫ λe
D

h0

WR(λ;λ)f(λ)dλ

+

∫ λ̄

λe
D

WR (h0;λ) f(λ)dλ

where f is the density function for λ > 0 and z ≥ 0 is the probability of λ = 0. Note

that this equation looks nearly identical to the objective in equation (34) in the proof of

Proposition 9 above, only with h0 replacing h1. The difference between the two equations

lies inside the WR term for λ > λeD, which now captures the fact that a run is occurring in

these states. Despite this difference, the steps are identical to those following equation (34)

and are omitted here. Following those steps shows that, when h1 = h, increasing h0 above

zero creates a first-order gain for the regulator in states where the bank is bailed out and

has no first-order cost in states where the bank is sound. As a result, h∗0 > 0 must hold.

Case (iii): µ = µ2

The final case is where the public sector’s marginal cost of funds lies exactly on the

boundary between the two previous cases. The analysis in Section 5.2 of the main text

shows that, in this case, the bank is indifferent between setting h = h > 0, which prevents

a run, and setting h = 0, which provokes a run. We assume the bank chooses h = h in this

situation, but increasing h∗1 even slightly above h would lead the bank to switch to h = 0

in states where it is bailed out. To increase the regulator’s payoff in this case, therefore, we

need to raise both h0 and h1 together in such a way that the bank continues to be willing to

choose the higher of the two values.
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Give some h1 ≥ h, let g(h1) be the bail-in satisfying

πu ((1− h1)c
∗
1) + (1− π)u ((1− λ∗)c∗1) =

πu
(
(1− g(h1))c

∗
1

)
+ (1− π)

[
πu ((1− λ∗)c∗1) + (1− π)u ((1− λ∗)c∗2)

]
In other words, the bank is indifferent between setting h1 with no run and setting g(h1) with

a run. Using the form of the utility function in equation (1), we can solve this equation for

g (h1) = 1−
(
(1− h1)

1−γ + (1− π)

(
u((1− λ∗)c∗2)

u((1− λ∗)c∗1)
− 1

)) 1
1−γ

. (47)

When µ = µ2, we have g(h) = 0. (This is effectively the definition of µ2 from the proof

of Proposition 6.) It is straightforward to show from equation (47) that g(h1) is strictly

increasing and differentiable as h1 increases above h. When h0 is set to g(h1), we can write

the regulator’s payoff as a function of h1 as

z WR (g(h1); 0) +

∫ g(h1)

0

WR (g(h1);λ) f(λ)dλ+

∫ h−ε

g(h1)

WR (λ;λ) f(λ)dλ

+

∫ λ̂

h−ε

WR (h− ε;λ) f(λ)dλ+

∫ h1

λ̂

WR (h1;λ) f(λ)dλ+

∫ λe
D

h1

WR (λ;λ) f(λ)dλ

+

∫ λ̄

λe
D

WR (h1;λ) f(λ)dλ.

When the bank has zero loss or a small loss, it chooses the smallest allowable bail-in, g(h1).

For λ between g(h1) and h− ε, the bank is not bailed out and is able to choose the efficient

bail-in, λ. For λ between h− ε and h1 , the efficient bail-in lies in the hole of the delegation

set and the bank will choose either h−ε or h1. As in case (i) above, the cutoff state between

these two choices, λ̂, is given by equation (45). For λ between h1 and λeD, the bank is again

able to choose the efficient bail-in, λ. Finally, for λ greater than λeD, the bank chooses h1

and prevents a run, as in case (i) above.

Differentiating this objective function with respect to h1 yields

z
dWR

dh
(g(h1); 0) g

′(h1) +

∫ g(h1)

0

dWR

dh
(g(h1);λ) g

′(h1)f(λ)dλ

+

∫ h1

λ̂

dWR

dh
(h1;λ) f(λ)dλ+

[
WR (λeD;λ

e
d)−WR (h1, λ

e
D)
]
f(λeD)

dλeD
dh1

+

∫ λ̄

λe
D

dWR

dh
(h1;λ) f(λ)dλ.
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We evaluate this derivative at h1 = h and take the limit as ε→ 0, which implies λ̂→ h and,

hence, the third term in the derivative is zero. In addition, g(h) = 0 implies the second term

is zero and the derivative reduces to

z
dWR

dh
(0; 0)︸ ︷︷ ︸

=0

g′(h) +
[
WR (λeD;λ

e
D)−WR (h, λeD)

]
︸ ︷︷ ︸

>0

f(λeD)
dλeD
dh1︸︷︷︸
>0

+

∫ λ̄

λe
D

dWR

dh
(h1;λ)︸ ︷︷ ︸
>0

f(λ)dλ. > 0.

The first term measures the first-order cost of distorting the choice in states where the bank

has no loss, which is shown to be zero in equation (36) above. The second term captures the

benefit of shrinking the set of states where the bail is bailed out and is strictly positive. The

final term captures the benefit of increasing the bail-in in states where the bank is bailed

out, which is also positive. As a result, the derivative is strictly positive when evaluated at

h1 = h. The optimal policy must, therefore, have either h∗0 > 0, h∗1 > h, or both.
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