Discussion of:

A Macroeconomic Model of Central Bank Digital Currency

by Pascal Paul, Mauricio Ulate, and Jing Cynthia Wu

Todd Keister Rutgers University

NBER Summer Institute, MMFF July 10, 2024

- Optimal CBDC policy: an interesting and active policy question
- Paper develops a rich, quantitative model
 - delivers a clear policy prescription
 - nice contribution to a growing literature

My discussion:

- Think through a simpler model
 - illustrate: effect of CBDC here is different than the "standard" view
 - want to understand/evaluate the key mechanism
- Offer some comments and questions

Consider a standard, non-stochastic growth model with:

- No nominal rigidities (real model)
- Competitive firms (capital producers and final goods producers)
- Households: save in bank deposits
 - have bank deposits in the utility function
- Banks: take deposits and lend to capital producers
 - have monopoly power in the deposit market
 - can also hold central bank reserves (positive or negative amounts)
- Central bank: sets the real interest rate on reserves (1+r)
 - budget balanced with lump-sum taxes/transfers

Focus on steady state

Bank's problem

market power

$$\max (1+r^{\ell})L + (1+r)H - (1+r^{d}(D))D$$

s.t. L + H = D + F note: $H \leq 0$

loans reserves deposits equity

FOC:

$$(1+r^{\ell}) = (1+r) \quad \Rightarrow \quad f'(k_{t+1}) = (1+r)$$

policy rate pins down investment, capital, output

 $(1+r^d) = \frac{\varepsilon}{\varepsilon+1}(1+r)$

deposit rate is a mark-down from policy rate

- Key point: deposit-taking and lending decisions are decoupled
 - changes in demand for deposits have <u>no effect</u> on lending
 - reserve holdings adjust so balance sheet identity holds

Adding CBDC

- Now suppose households can also hold CBDC
 - a substitute (perfect or imperfect) for deposits in utility terms
 - real return is set by the central bank (like reserves, but for households)
- Q: What is the optimal policy?
- When the CBDC rate is higher:
 - households hold more CBDC, fewer deposits
 - higher deposit rate \Rightarrow households are better off
 - fewer deposits \Rightarrow bank balance sheet shrinks
 - \blacktriangleright lending (and output) unchanged \Rightarrow bank just holds fewer reserves
 - bank profits decrease (assume rebated to households)
- Optimal policy: set $1 + r^{cbdc} = 1 + r \left(=\frac{1}{\beta}\right)$ ~ Friedman rule

- Key point: no tradeoff in this simplified model
 - similar in spirit to Andolfatto (2020)
- Introducing CBDC causes the banking sector to shrink ...

loans reserves deposits equity L + H = D + F(-) (-)

- ... but productive lending is unchanged
 - this "disintermediation" has no social cost
 - → optimal to make CBDC as attractive as possible to households (pay the market interest rate)

However:

In the policy discussion, disintermediating banks is a prominent concern. Why?

Funding channel

- Most of the discussion: reserves are not fully flexible
 - example: reserve requirements bind, or reserve holdings ≥ 0
 - or reserves are needed for liquidity requirements, resolution plans
- Then: • Then: L + H = D + F(-) (-)
 - when households shift out of deposits into CBDC ...
 - lending decreases (roughly one-for-one) through a funding channel
- Does the optimal policy change? It depends.
 - in the absence of other frictions, the Friedman rule is still optimal
 - with frictions in lending/investment, a tradeoff arises
 - Chiu et al. (2023), Keister and Sanches (2023), Williamson (2022)

Profit channel

- This paper: bank has a target for loans/equity
 - deviating from target is costly; like a (risk-weighted) capital requirement

$$\max \left(1+r^{\ell}\right)L + (1+r)H - \left(1+r^{d}(D)\right)D - \Psi\left(\frac{L}{F}\right)F$$

s.t.
$$L + H = D + F$$

• Extreme case:
$$\frac{L}{F}$$
 is fixed $(\equiv \rho)$
• FOC: $L = \rho F$ $(1 + r^d) = \frac{\varepsilon}{\varepsilon + 1}(1 + r)$

- Deposit-taking and lending decisions are still decoupled
 - reserve holdings again adjust so balance sheet identity holds
- What determines bank equity F?
 - assume: constant fraction of profits are retained each period

 $H \leq 0$

- When CBDC is introduced, everything is as before ...
 - households hold more CBDC, fewer deposits
 - interest rate on deposits increases
 - banks hold fewer reserves, profits decrease
- ... but now future bank equity is smaller \Rightarrow less future lending

Key point: CBDC decreases lending and investment ...

- not through a *funding channel* (fewer deposits \Rightarrow fewer loans)
- but through a *profit channel* (smaller profits \Rightarrow fewer future loans)

q: has this channel appeared elsewhere in the literature?

- There has been much work/discussion of the funding channel
 - one view: banks can easily replace lost deposits (Whited et al., 2023)
- Here: even in a setting where the funding channel is absent (by design) ...
- ... CBDC may still have a significant effect on bank lending
 - need to avoid making CBDC too attractive
- Optimal policy is similar to models based on the funding channel
 - here: CBDC should pay interest; rate = policy rate 100bp

I want to think a bit more about this profit channel ...

Comments and questions

- 1. Dividend policy
- 2. Central bank lending
- 3. Leverage vs. capital requirements

- Paper assumes: dividend_t = (1ω) profit_t
- In principle, ω might respond to changes in the return on equity

Q: How does CBDC affect the marginal return on bank equity?

 \blacktriangleright when profits and equity \downarrow , the marginal return on lending should \uparrow

 \Rightarrow incentive to retain more earnings (?)

- Sounds odd: banks are less profitable, but the RoE increases?
- Recall: deposit-taking and lending decisions are decoupled
 - Deposit-taking is less profitable, but
 - ... an increase in equity would primarily fund more lending

loans reserves deposits equity L + H = D + F(+) (+)

In other words:

- Would a more endogenous dividend policy mitigate the profit channel?
 - and push the optimal CBDC interest rate higher?
 - that is, closer to my benchmark model
- More generally, I worry about saying:
 - "don't make CBDC too attractive; we need to protect bank profits"
- > Perhaps it is true, given various frictions, ...
- ... but I would want to think more about incentives related to bank equity when the environment changes

2. Central bank lending

- One proposal to mitigate funding disintermediation:
 - central bank lends to banks; replaces the lost deposits
- Such lending is allowed in the model here ... (H < 0)
 ⇒ no funding disintermediation for this reason
- ... but at the policy rate (1 + r)
- CB could lend at a *lower* rate to boost bank profits
 - \blacktriangleright choose loan size/rate to keep profits unchanged \rightarrow lending unchanged
- Such lending might raise political economy concerns
 - but so should paying a lower interest rate on CBDC than on reserves
 - and the lending policy leads to higher welfare (?)
- Point: there are multiple ways to protect bank profits if needed
 - is a paying a below-market interest rate on CBDC the best?

Brunnermeier and Niepelt (2019)

3. Regulating leverage vs. capital

- Paper assumes bank has a target for $\frac{L}{F}$
 - ~ risk-adjusted capital ratio (with zero risk weight for reserves)

loans reserves deposits equity

(-) (-)

L + H = D + F

- Suppose instead the target is for leverage: $\frac{L+H}{F}$
- If equity decreases:
 - return on lending is high
 - shedding reserves seems more attractive (?)

Two questions:

- Are the results very different under a leverage constraint?
- In practice, which type of constraint is more binding?

• Nice paper on an interesting and very topical issue!