Can Redemption Fees Prevent Runs on Funds?

Xuesong Huang Lingnan College Sun Yat-sen University Todd Keister *Rutgers University*

October 2024

- Recurrent phenomenon: runs on banks and related institutions
 - Spring 2023: Silicon Valley Bank (SVB), Signature, First Republic
 - Spring 2020: Money Market Mutual Funds (MMFs)
 - Fall 2008: investment banks, repo markets, MMFs, many more
- Much discussion and policy reforms on how to prevent runs
 - government guarantees, lender of last resort, capital requirements, liquidity regulation, etc.
- We look at one approach: redemption fees
 - adjust payments based on redemption/withdrawal demand
 - recent reforms to MMFs in the U.S. provide a concrete laboratory
 - but the ideas potentially apply much more broadly

- Sept. 2008: runs on institutional prime MMFs
- July 2014: SEC modified the rules governing these MMFs
 - allowed to impose gates and redemption fees ...
 - ... when a fund's ratio of liquid to total assets falls below a threshold
- Interpretation: allow funds to operate as usual in normal times
 - but react to "unusually" high redemption demand
 - hope to put these events off the equilibrium path of play
- March 2020: runs on institutional prime funds again
 - \Rightarrow the 2014 reform was ineffective

July 2023: SEC finalized new rules

- removed the liquid-asset threshold and the option to use gates
- impose fees based on *current redemption demand*

"A mandatory fee is charged to redeeming investors when the fund has net redemptions above 5% of net assets."

- Interpretation: apply redemption fees more often
 - on the equilibrium path (when no run is occurring)

"We estimate that an average of 3.2% of institutional funds would cross a 5% net redemption threshold on a given day."

- Will the new reform work? What is the optimal fee policy?
 - how should the size of the fee and the threshold be set?

- Develop a model to study MMF redemption-fee policies
- Show: using fees only in extraordinary times is ineffective
 - fund is often susceptible to a preemptive run (~March 2020)
- Derive the best <u>run-proof</u> fee policy
 - can be complex, depends on difficult-to-measure parameters
 - but illustrates general principles for effective fee policies
- Derive the best <u>simple</u>, <u>robust</u> run-proof fee policy
- Compare to the 2023 reform
 - current approach is vulnerable when market liquidity may worsen
 - best policy has <u>smaller</u> fee that applies <u>more often</u>

- Existing models of *preemptive* bank runs
 - Engineer (1989), Cipriani et al. (2014), Voellmy (2021)
- Runs on MMFs and patterns of redemptions at mutual funds more broadly
 - Chen et al. (2010), Schmidt et al. (2016), Parlatore (2016), Goldstein et al (2017), Zeng (2017), Cipriani & La Spada (2020), Alvados & Xia (2021), Jin et al. (2022), Li et al. (2021), and others

Policy papers on MMF reform

- Ennis (2012), McCabe et al. (2013), President's Working Group Report (2020), Ennis, Lacker and Weinberg (2023), and others
- Our contribution: if the goal is to prevent runs ...
 - what *principles* should determine MMF redemption fees?

1) Model

- 2) Run equilibria
 - classic vs. preemptive runs
- 3) Run-proof policies
 - general principles; simple policies
- 4) Robust run-proof policies
 - best policy vs. the 2023 reforms
- 5) Concluding remarks

- Investors: $i \in [0,1]$ t = 0,1,2,3
 - endowed with one unit of good at t = 0, nothing later
- Technologies:
 - storage yields gross return of 1 in any period

• investment at
$$t = 0$$
 yields: $\begin{cases} r_1 < 1 \\ r_2 < 1 \\ R > 1 \end{cases}$ at $\begin{cases} t = 1 \\ t = 2 \\ t = 3 \end{cases}$

 $\blacktriangleright R \text{ is known} \qquad \qquad \blacktriangleright r_2 \text{ may be random}$

• Utility:
$$\begin{cases} u(c_1) \\ u(c_1 + c_2) \\ u(c_1 + c_2 + c_3) \end{cases}$$
 if investor is
$$\begin{cases} type 1 \\ type 2 \\ patient \end{cases}$$
 "impatient"

Focus on: $u(c) = \ln(c)$

- Fraction of impatient investors (types 1 & 2) is known: π
- Fraction of type 1 investors is random: $\pi_1 \sim F[0, \pi]$
 - no uncertainty about total early redemption demand
 - but uncertainty about the *timing* of that demand
- Investors learn their type gradually
 - at t = 1, only learn whether or not they are type 1
- A fraction $\delta \in (0,1]$ of non-type 1 investors can redeem at t = 1
 - the remaining 1δ are inattentive ("don't see the sunspot")
 - role: limits size of a potential run in period 1
 - assume δ is known (for now)

- A planner with full information would:
 - pay type 1 and 2 investors using goods in storage
 - pay type 3 investors using matured investment
- ► Log utility ⇒ planner will set: $c_1 = c_2 = 1$ $c_3 = R$
 - portfolio: π in storage, (1π) invested
- \Rightarrow The same allocation as in a two-period model
- Q: How might this allocation be decentralized ...
 - ... when preference types are private information?

- Suppose investors pool endowments, set up a *fund* that:
 - follows the planner's portfolio $(s, 1 s) = (\pi, 1 \pi)$
 - allows investors to choose when to redeem (\Rightarrow a game)
- At t = 1,2 : fund observes redemption demand m_t
 - then pays all redeeming investors

no sequential service within a period

- A *policy* specifies:
 - $c_1(m_1)$ $c_2(m_1, m_2)$ $c_3(m_1, m_2)$
- Easy to implement the planner's allocation as <u>an</u> equilibrium
 - example: set $c_1 = c_2 = 1$ for all (m_1, m_2) ("pay at par")
- But ... is the fund susceptible to a run?

Outline

1) Model

2) Run equilibria

- classic vs. preemptive runs
- 3) Run-proof policies
 - general principles; simple policies
- 4) Robust run-proof policies
 - best policy vs. the 2023 reforms
- 5) Concluding remarks

- Suppose the fund sets $c_1 = 1$ and $c_2 = 1$ whenever possible
- t = 3: remaining investors get prorata share of matured investment
 - if no run: dividend = R 1
 - resembles pre-2014 rules for MMFs
- If investment is perfectly liquid ...

- ... there is no bank run equilibrium (\rightarrow log utility)
- If r_1 is small enough: a bank run equilibrium exists ...
 - ... for the "classic" Diamond-Dybvig reason
 - one way of thinking about the runs on MMFs in 2008

details

- Now suppose fund imposes a redemption fee ...
 - if net redemptions are "extraordinary" (only consistent with a run)
 - here: $m_1 > \pi$ or $m_1 + m_2 > \pi$
- Aim: remove the incentive to run ...
 - with fees that are off-equilibrium
 when there is no run (→ no cost)
- Q: How to set the fee? 100%?
- Require the policy to satisfy *time consistency*
 - if *m* indicates a run, redemption fee must be ex-post efficient
 - in the spirit of Ennis and Keister (2009, 2010)
- Would still prevent runs in a two-period model. But ...

- Suppose a non-type 1 investor expects a run at t = 1
- Compares the expected utility of:

redeem: $\int_0^{\pi} u(c_1(m_1)) f_n(\pi_1) d\pi_1$

 $m_1 = \pi_1 + \delta(1 - \pi_1)$ $m_2 = (1-\delta)(\pi - \pi_1)$

wait:
$$\int_0^n \left[p_n u(c_2(m_1, m_2)) + (1 - p_n) u(c_3(m_1, m_2)) \right] f_n(\pi_1) d\pi_1$$

- If π_1 is large enough: $m_1 > \pi$ and run is detected immediately
 - fee imposed at $t = 1 \rightarrow$ no incentive to join the run
- Worry: if π_1 is small, run will not be detected until t = 2
 - a fee will be imposed then and I might need to redeem
 - generates an incentive to redeem preemptively (today)

• Compare EU(wait) and EU(redeem) as δ varies

Run equilibrium tends to exist ...

... when δ is moderate

When δ is large, a run is likely detected by the fund at t = 1

• fee applied at t = 1 (and t = 2)

no incentive to redeem early

- When δ is small, a run is small \Rightarrow fund is in good shape
- > In between: a moderate-sized run may initially go undetected
 - in this region: incentive to redeem before the fee is imposed

- We argue: the 2014 reforms had this flavor
 - allow funds to operate as usual in normal times
 - take action (fees, gates) if redemption demand is extraordinary
- Such policies can prevent "classic" runs ...
- ... but are often susceptible to preemptive runs
 - even when there is *no sequential service* within a period
- Danger comes from intermediate values of δ
 - a run that is large enough to cause damage ...
 - ... but small enough to go undetected in the first period

 \Rightarrow To prevent runs: need to impose fees in normal times as well

1) Model

- 2) Run equilibria
 - classic vs. preemptive runs
- 3) Run-proof policies
 - general principles; simple policies
- 4) Robust run-proof policies
 - best policy vs. the 2023 reforms
- 5) Concluding remarks

- If the previous policy is fragile for some value of δ ...
 - need to impose fees in normal times $(m < \pi)$ to prevent runs

- in equilibrium, where no run occurs
- subject to the constraint that "wait" is a dominant strategy ...
 - for non-type 1 investors at t = 1

Choose the policy $c_1(m_1)$ for $m_1 \leq \pi$ to solve:

expected utility with no run

 $)d\pi_1$

$$\max_{\{c_1(m_1)|m_1 \le \pi\}} \int_0^{\pi} \begin{cases} \pi_1 u(c_1(\pi_1)) + (\pi - \pi_1)u(c_2(\pi_1, \pi_2)) \\ + (1 - \pi)u(c_3(\pi_1, \pi_2)) \end{cases} \end{cases} f(\pi_1)$$

subject to the run-proof constraint:

$$\text{redeem} \quad \int_{0}^{\pi} u(c_{1}(m_{1}))f_{n}(\pi_{1})d\pi_{1} \leq \qquad \text{if I expect all others to run} \\ \text{wait} \quad \int_{0}^{\pi} \left[p_{n}u(c_{2}(m_{1},m_{2})) + (1-p_{n})u(c_{3}(m_{1},m_{2})) \right]f_{n}(\pi_{1})d\pi_{1}$$

- where $c_2(m_1, m_2)$ and $c_3(m_1, m_2)$ are:
 - (i) feasibile

(*ii*) chosen optimally for $m_1 + m_2 = \pi$

(*iii*) time consistent for $m_1 + m_2 > \pi$

same functions in objective and constraint

but evaluated at *different points*

The best run-proof contract:

- When $m_1 < \delta$, fund is sure there is no run \Rightarrow no fee
- When $m_1 > \pi$, fund knows a run is underway
 - \Rightarrow sets the time-consistent fee
- ▶ In between ...

A general principle

Optimal payout in the middle region depends on the ratio:

- Overall shape depends on f
- But fee tends to *decrease* in this region (counterintuitive?)
 - costly to impose fees when many investors (truly) need the money

- Optimal fee schedule depends on:
 - current liquidation cost (r_1)
 - dist. of future liquidation cost (r_2)
 - or, investors' beliefs about r₂
 - the size of a run (if one were to occur \rightarrow

• Concerns:

- the optimal fee schedule is complex; could it be implemented?
- may be difficult to measure beliefs of r_2 and incorporate into fee
- may be difficult to measure δ
 - could use past run episodes (2008, 2020), but ...
 - may change (ex: group of investors join same Slack channel)

Remaining steps

- We deal with these concerns in two steps
- First: restrict attention to simple policies
 - fee in the middle region can be zero or a constant
 - derive the best simple run-proof policy
- Second: study robust policies
 - require the policy to be run-proof for a range of r_2 , δ
 - derive the best robust, simple run-proof policy
- Compare this policy to the 2023 reforms

1) Model

- 2) Run equilibria
 - classic vs. preemptive runs
- 3) Run-proof policies
 - general principles; simple policies
- 4) Robust run-proof policies
 - best policy vs. the 2023 reforms
- 5) Concluding remarks

- A *simple* policy is characterized by two numbers:
 - \overline{m} : threshold below which no fee is applied
 - $\bar{c} < 1$: payment between the threshold \bar{m} and π (fee = $1 \bar{c}$)

• Time-consistent fee still applies when $m_1 > \pi$

recall: lies off the equilibrium path

represents extraordinary actions (perhaps closing the fund)

Best simple policy

- Intuitively: best simple policy is an average ...
 - ... of the fee in the best general policy over $[\delta, \pi]$

• Best simple policy tends to set $\overline{m} = \delta$

always: if best general policy is increasing (ex: if f is uniform)

⇒ Apply a fee whenever redemptions are consistent with a run

- Ask: what combinations of $(\overline{m}, \overline{c})$ are run proof?
- Suppose $\overline{m} = \delta$. Ask: what c^* would make policy run-proof?
- For $\overline{m} < \delta$: boundary is flat
 - because fee will always apply in run
- For $\overline{m} > \delta$: boundary is slopes down
 - larger $\overline{m} \rightarrow$ higher probability a run will not be detected until t = 2
 - requires a higher fee
- Best policy is often at the kink point (set threshold = δ)
- But: optimal policy still depends on r_2 , δ , so ...

1) Model

- 2) Run equilibria
 - classic vs. preemptive runs
- 3) Run-proof policies
 - general principles; simple policies
- 4) Robust run-proof policies
 - best policy vs. the 2023 reforms
- 5) Concluding remarks

- So far, the optimal policy relies on knowing δ and r_2
 - which can easily change over time; difficult to monitor
- Robust approach: policy must be run-proof ...
 - ▶ for <u>all</u> $\delta \in [0,1]$ and for <u>all</u> $r_2 \in [\underline{r},1]$
- The run-proof condition is monotone in r₂
 - lower (distribution of) r_2 always makes running more attractive
 - focus on the worst-case scenario: $r_2 = \underline{r}$ with probability 1
- The run-proof condition is <u>not</u> monotone in δ
 - recall: the danger is a run that is "medium-sized"
 - what is the worst-case scenario for δ ?

- Graphically
- Look at the intersection of the run-proof set for all $\delta \in [0,1]$
- Focus on two cases:
 - a large-ish $\bar{\delta}$
 - optimal threshold and fee are high
 - a smaller δ
 - both threshold and fee are both smaller
- Can show: there exits a unique (m^*, c^*) such that:
 - the robust run-proof boundary is flat up to (m^*, c^*)
 - then downward sloping
 - optimal robust policy is often (m^*, c^*) (always true if f is uniform)

In other words

- Model offers a *theory* of how $(\overline{m}, \overline{c})$ should be set
- Fee: set \bar{c} to guard against "large" runs
 - a large run will very likely trigger the fee ($\Rightarrow \overline{m}$ not important)
 - ▶ find worst-case large run $(\bar{\delta}) \rightarrow$ set fee to remove run incentive
- Threshold: set m
 to guard against
 "smaller" runs
 - a small run may or may not trigger the fee
 - ▶ find worst-case small run $(\underline{\delta}) \rightarrow$ set threshold to remove run incent.

Q: How does (m^*, c^*) how does it compare to the 2023 reforms?

1) Model

- 2) Run equilibria
 - classic vs. preemptive runs
- 3) Run-proof policies
 - general principles; simple policies
- 4) Robust run-proof policies
 - best policy vs. the 2023 reforms
- 5) Concluding remarks

New rules require:

- threshold: $\overline{m} = 5\%$
- fee: determined by a "vertical slice rule"

"The size of the fee generally is determined by ... costs the fund would incur if it were to <u>sell a pro rata amount of each security</u> in its portfolio to satisfy the amount of net redemptions."

In our model:

 $\bar{c} = \pi + r_1 (1 - \pi)$ for $m_1 \in [\bar{m}, \pi]$

• note: equal to the time-consistent fee for $m > \pi$

- Justification: "removes the first-mover advantage"
 - true in a sense. But ...

Q: Is this policy robust run-proof in our model?

A: No.

- suppose $r_1 = 1$, but r_2 may be < 1
- vertical slice rule sets fee = 0
 - \blacktriangleright \approx the first policy we studied

- Model shows where current rules are vulnerable
 - if investors worry that market conditions may deteriorate ...
 - a redemption fee based on <u>current</u> liquidation values is too small
 - investors fear the fee will increase \rightarrow run preemptively

• One fix: use \underline{r} in the vertical slice rule

 $\bar{c} = \pi + \underline{r} (1 - \pi)$ for $m_1 \in [\bar{m}, \pi]$

- price according to the worst-case scenario for r_t
- \blacktriangleright set \overline{m} to the maximum value that is run proof for all δ
- This policy is robust run-proof ... but too harsh
 - large fee in states where many investors need to redeem
- Optimal fee is smaller
 - threshold is also smaller
 - fee is imposed more often, but fewer on investors

1) Model

- 2) Run equilibria
 - classic vs. preemptive runs
- 3) Run-proof policies
 - general principles; simple policies
- 4) Robust run-proof policies
 - best policy vs. the 2023 reforms
- 5) Concluding remarks

Concluding remarks

Q: Can redemption fees prevent runs on funds?

- in a robust way, using a "simple" policy?
- A: Yes
 - plus: model illustrates how the fee and threshold should be set
- Would MMFs be useful/viable under this policy?
 - it depends ... especially on \underline{r}
- Note: a backstop facility would set a floor for <u>r</u>
 - could make this approach more viable/attractive
- We think this approach could also be applied more broadly
 - corporate bond mutual funds, and beyond?

Appendix

Time consistency in period 2

- What information does the fund have in period 2?
 - redemption demand in periods 1 and 2: (m_1, m_2)
 - remaining portfolio: (s_2, i_2)
- The time-consistent allocation (c_2, c_3) solves

 $\max_{\{c_2,c_3\}} m_2 u(c_2) + (1 - m_1 - m_2)u(c_3)$ $m_2 c_2 + e_2 = s_2 + r\ell_2 \qquad e_2 \ge 0$ $(1 - m_1 - m_2)c_3 = R(i_2 - \ell_2) + e_2 \qquad \ell_2 \ge 0$

- ▶ solution has $c_2 \le c_3 \Rightarrow$ no incentive to run in period 2
- When $m_1 \le \pi$ and $m_1 + m_2 > \pi$, $s_2 = \pi m_1$ and $i_2 = 1 \pi$

▶ solution has $c_2 < 1 \rightarrow$ fee imposed in period 2

- If $m_1 > \pi$, the fund can forecast m_2
 - assumes a run is underway $\Rightarrow m_1 = \pi_1 + \delta(1 \pi_1)$

• observing $m_1 > \pi$ allows the bank to infer π_1

- no run at $t = 2 \Rightarrow m_2 = (1 \delta)(\pi \pi_1)$
- Time consistency at t = 1 requires (c_1, c_2, c_3) to solve:

 $\max_{\{c_1,c_2,c_3\}} m_1 u(c_1) + m_2 u(c_2) + (1 - m_1 - m_2) u(c_3)$ $m_1 c_1 + m_2 c_2 = s + r\ell$ $(1 - m_1 - m_2) c_3 = R(i - \ell) \qquad \ell \ge 0$

- ▶ solution has $c_1 = c_2 < c_3$ and $c_1 = c_2 < 1$ → fee imposed in period 1
- Note: redemption fee removes the incentive to run if the run is detected right away

32

return